Ultrasonic fuel level sensor development in automotive applications

[1]  Mustafa Arafa,et al.  Finite Element Analysis of Sloshing in Rectangular Liquid-filled Tanks , 2007 .

[2]  Xindong Wu,et al.  Support vector machines based on K-means clustering for real-time business intelligence systems , 2005, Int. J. Bus. Intell. Data Min..

[3]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[4]  Monson H. Hayes Schaum's Outline of Theory and Problems of Digital Signal Processing , 1998 .

[5]  Jon Rigelsford Handbook of Neural Network Signal Processing , 2003 .

[6]  Yoram Koren,et al.  Noise rejection for ultrasonic sensors in mobile robot applications , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[7]  A. C. Fischer-Cripps,et al.  Newnes interfacing companion , 2002 .

[8]  E. Brigham,et al.  The fast Fourier transform and its applications , 1988 .

[9]  Heinrich Kuttruff,et al.  Ultrasonics fundamentals and applications , 1991 .

[10]  Joseph Picone,et al.  Applications of support vector machines to speech recognition , 2004, IEEE Transactions on Signal Processing.

[11]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .

[12]  A. C. Fischer-Cripps Force, pressure and flow , 2002 .

[13]  J. Jan Medical Image Processing, Reconstruction and Restoration: Concepts and Methods , 2005 .

[14]  P. Hauptmann,et al.  Ultrasonic density sensor for liquids , 2000, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[15]  Kim Hyun-Soo,et al.  Optimization design technique for reduction of sloshing by evolutionary methods , 2008 .

[16]  Vojin G. Oklobdzija The Computer Engineering Handbook , 2007 .

[17]  Elad Yom-Tov,et al.  An Introduction to Pattern Classification , 2003, Advanced Lectures on Machine Learning.

[18]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[19]  Vladimir Vapnik,et al.  An overview of statistical learning theory , 1999, IEEE Trans. Neural Networks.

[20]  Jun Wang,et al.  A virtual level temperature compensation system based on information fusion technology , 2007, 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[21]  Ovidiu Ivanciuc,et al.  Applications of Support Vector Machines in Chemistry , 2007 .

[22]  Subhash Rakheja,et al.  Analysis of the overturning moment caused by transient liquid slosh inside a partly filled moving tank , 2006 .

[23]  Greg Humphreys,et al.  Sampling and Reconstruction , 2010 .

[24]  Ernest W. Flick,et al.  Industrial solvents handbook , 1985 .

[25]  Ronald L. Allen,et al.  Signal Analysis: Time, Frequency, Scale and Structure , 2003 .

[26]  David Salomon,et al.  Data Compression: The Complete Reference , 2006 .

[27]  Chih-Jen Lin,et al.  Training v-Support Vector Classifiers: Theory and Algorithms , 2001, Neural Computation.

[28]  Pengzhi Lin,et al.  A numerical study of three-dimensional liquid sloshing in tanks , 2008, J. Comput. Phys..

[29]  Liming Dai,et al.  A Numerical Scheme for Dynamic Liquid Sloshing in Horizontal Cylindrical Containers , 2006 .

[30]  Kurt Hornik,et al.  The support vector machine under test , 2003, Neurocomputing.

[31]  John G. Webster,et al.  Sensors and Signal Conditioning , 1993 .

[32]  Ronald L. Allen,et al.  TimeDomain Signal Analysis , 2003 .

[33]  C. Shavers,et al.  An SVM-based approach to face detection , 2006, 2006 Proceeding of the Thirty-Eighth Southeastern Symposium on System Theory.

[34]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[35]  Abdul Rahim Ahmad,et al.  Online handwriting recognition using support vector machine , 2004, 2004 IEEE Region 10 Conference TENCON 2004..

[36]  Bernhard Schölkopf,et al.  A tutorial on v-support vector machines , 2005 .

[37]  Shigeo Abe Support Vector Machines for Pattern Classification , 2010, Advances in Pattern Recognition.

[38]  Bernhard Schölkopf,et al.  New Support Vector Algorithms , 2000, Neural Computation.

[39]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[40]  Stefan aus der Wiesche Computational slosh dynamics: theory and industrial application , 2003 .

[41]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[42]  Issa Bass,et al.  Six Sigma Statistics with EXCEL and MINITAB , 2007 .

[43]  R. Ibrahim Liquid Sloshing Dynamics: Theory and Applications , 2005 .

[44]  Andrea Boni,et al.  Low-Power and Low-Cost Implementation of SVMs for Smart Sensors , 2007, IEEE Transactions on Instrumentation and Measurement.

[45]  Kazushi Ikeda,et al.  Effects of kernel function on Nu support vector machines in extreme cases , 2006, IEEE Transactions on Neural Networks.

[46]  Peter B. Nagy,et al.  Ultrasonic Processes and Machines: Dynamics, Control and Applications , 1995 .

[47]  Ronald E. Goldstein,et al.  Principles and techniques , 2009 .

[48]  Chuan-Ying Jia,et al.  A new nu-support vector machine for training sets with duplicate samples , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[49]  Harry Wechsler,et al.  Face pose discrimination using support vector machines (SVM) , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[50]  Gerard V. Trunk,et al.  A Problem of Dimensionality: A Simple Example , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[52]  Anil K. Jain Fundamentals of Digital Image Processing , 2018, Control of Color Imaging Systems.

[53]  Mark S. Nixon,et al.  Feature Extraction and Image Processing , 2002 .

[54]  Harald Hruschka,et al.  Comparing performance of feedforward neural nets and K-means for cluster-based market segmentation , 1999, Eur. J. Oper. Res..

[55]  John G. Webster,et al.  The Measurement, Instrumentation and Sensors Handbook , 1998 .

[56]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[57]  S. Merrill Weiss Discrete Cosine Transform , 1996 .

[58]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[59]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[60]  Lawrence E. Kinsler,et al.  Fundamentals of acoustics , 1950 .

[61]  Philipp Slusallek,et al.  Introduction to real-time ray tracing , 2005, SIGGRAPH Courses.

[62]  Shuhe Zhao,et al.  Remote sensing data fusion using support vector machine , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[63]  S. K. Bhattacharyya,et al.  Experimental investigation of slosh dynamics of liquid-filled containers , 2001 .

[64]  Jun Zhang,et al.  SVM-based ultrasonic medicine image diagnosis , 2001, International Symposium on Multispectral Image Processing and Pattern Recognition.

[65]  B. Bowerman Statistical Design and Analysis of Experiments, with Applications to Engineering and Science , 1989 .

[66]  Robert X. Gao,et al.  Discrete Wavelet Transform , 2011 .

[67]  P. Regtien 4 – Resistive Sensors , 2012 .

[68]  Alf Püttmer,et al.  Ultrasonic sensors for process monitoring and chemical analysis: state-of-the-art and trends , 1998 .

[69]  James C. Bezdek,et al.  Fuzzy mathematics in pattern classification , 1973 .

[70]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[71]  D. Houzet,et al.  Implementation of the SVM neural network generalization function for image processing , 2000, Proceedings Fifth IEEE International Workshop on Computer Architectures for Machine Perception.

[72]  N.M. Rajpoot,et al.  Wavelets and support vector machines for texture classification , 2004, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[73]  C. R. Nagarajah,et al.  Fluid level measurement in dynamic environments using a single ultrasonic sensor and Support Vector Machine (SVM) , 2010 .

[74]  F. Alton Everest,et al.  Master handbook of acoustics , 1981 .

[75]  M. Davenport The 2nu-SVM: A Cost-Sensitive Extension of the nu-SVM , 2005 .

[76]  Xue-Ling Song,et al.  Application research of information fusion technology of multi-sensor in level measurement , 2004, Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826).

[77]  William C. Dunn,et al.  Introduction to Instrumentation, Sensors, and Process Control , 2005 .

[78]  S. Mallat A wavelet tour of signal processing , 1998 .

[79]  Tony Jebara,et al.  Multi-task feature and kernel selection for SVMs , 2004, ICML.

[80]  Shigeo Abe,et al.  Two-Class Support Vector Machines , 2010 .

[81]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[82]  David Zipser,et al.  Feature Discovery by Competive Learning , 1986, Cogn. Sci..

[83]  F. Lobkowicz,et al.  Physics for Scientists and Engineers, Vol. I , 1976 .

[84]  Teuvo Kohonen,et al.  Self-organization and associative memory: 3rd edition , 1989 .

[85]  Bernhard Schölkopf,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.