Pairwise combination of classifiers for ensemble learning on data streams
暂无分享,去创建一个
[1] Robert P. W. Duin,et al. Limits on the majority vote accuracy in classifier fusion , 2003, Pattern Analysis & Applications.
[2] M. Harries. SPLICE-2 Comparative Evaluation: Electricity Pricing , 1999 .
[3] Geoff Hulten,et al. Mining high-speed data streams , 2000, KDD '00.
[4] William Nick Street,et al. A streaming ensemble algorithm (SEA) for large-scale classification , 2001, KDD '01.
[5] Leo Breiman,et al. Bagging Predictors , 1996, Machine Learning.
[6] Geoff Holmes,et al. MOA: Massive Online Analysis , 2010, J. Mach. Learn. Res..
[7] Ludmila I. Kuncheva,et al. Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy , 2003, Machine Learning.
[8] Heitor Murilo Gomes,et al. SAE2: advances on the social adaptive ensemble classifier for data streams , 2014, SAC.
[9] Heitor Murilo Gomes,et al. SAE: Social Adaptive Ensemble classifier for data streams , 2013, 2013 IEEE Symposium on Computational Intelligence and Data Mining (CIDM).
[10] Tomasz Imielinski,et al. Database Mining: A Performance Perspective , 1993, IEEE Trans. Knowl. Data Eng..
[11] Jean Paul Barddal,et al. SFNClassifier: a scale-free social network method to handle concept drift , 2014, SAC.
[12] Marcus A. Maloof,et al. Dynamic Weighted Majority: An Ensemble Method for Drifting Concepts , 2007, J. Mach. Learn. Res..
[13] Thierry Denoeux,et al. Pairwise classifier combination using belief functions , 2007, Pattern Recognit. Lett..
[14] Geoff Holmes,et al. New ensemble methods for evolving data streams , 2009, KDD.
[15] Geoff Holmes,et al. Evaluation methods and decision theory for classification of streaming data with temporal dependence , 2015, Machine Learning.
[16] Grigorios Tsoumakas,et al. An adaptive personalized news dissemination system , 2009, Journal of Intelligent Information Systems.
[17] Philip S. Yu,et al. Mining concept-drifting data streams using ensemble classifiers , 2003, KDD '03.
[18] Geoff Hulten,et al. Mining time-changing data streams , 2001, KDD '01.
[19] Robert Tibshirani,et al. Classification by Pairwise Coupling , 1997, NIPS.
[20] Stuart J. Russell,et al. Online bagging and boosting , 2005, 2005 IEEE International Conference on Systems, Man and Cybernetics.
[21] Jerzy Stefanowski,et al. Combining block-based and online methods in learning ensembles from concept drifting data streams , 2014, Inf. Sci..
[22] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[23] João Gama,et al. Issues in evaluation of stream learning algorithms , 2009, KDD.
[24] Ricard Gavaldà,et al. Learning from Time-Changing Data with Adaptive Windowing , 2007, SDM.
[25] Manfred K. Warmuth,et al. The Weighted Majority Algorithm , 1994, Inf. Comput..
[26] Geoff Holmes,et al. Leveraging Bagging for Evolving Data Streams , 2010, ECML/PKDD.
[27] Janez Demsar,et al. Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..