Detrimental Decoherence

We propose and discuss two conjectures on the nature of information leaks (decoherence) for quantum computers. These conjectures, if (or when) they hold, are damaging for quantum error-correction as required by fault-tolerant quantum computation. The first conjecture asserts that information leaks for a pair of substantially entangled qubits are themselves substantially positively correlated. The second conjecture asserts that in a noisy quantum computer with highly entangled qubits there will be a strong effect of error synchronization. We present more general conjectures for arbitrary noisy quantum systems.

[1]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[2]  Rolf Landauer,et al.  Is quantum mechanics useful? , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[3]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[4]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[6]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[7]  A. Kitaev Quantum Error Correction with Imperfect Gates , 1997 .

[8]  D. Deutsch Quantum theory, the Church–Turing principle and the universal quantum computer , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[10]  H. S. Allen The Quantum Theory , 1928, Nature.

[11]  Barbara M. Terhal,et al.  Fault-tolerant quantum computation for local non-Markovian noise , 2005 .

[12]  M. Freedman,et al.  Topological Quantum Computation , 2001, quant-ph/0101025.

[13]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[14]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[15]  P. Zanardi,et al.  Are the Assumptions of Fault-Tolerant Quantum Error Correction Internally Consistent? , 2005 .

[16]  Alexander A. Razborov An upper bound on the threshold quantum decoherence rate , 2004, Quantum Inf. Comput..

[17]  Richard Cleve,et al.  Fast parallel circuits for the quantum Fourier transform , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[18]  Alexander Schrijver,et al.  New Limits on Fault-Tolerant Quantum Computation , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[19]  Scott Aaronson,et al.  Multilinear formulas and skepticism of quantum computing , 2003, STOC '04.

[20]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[21]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[22]  Robert RAUßENDORF MEASUREMENT-BASED QUANTUM COMPUTATION WITH CLUSTER STATES , 2009 .

[23]  Michal Horodecki,et al.  Dynamical description of quantum computing: Generic nonlocality of quantum noise , 2002 .

[24]  E. Knill Quantum Computing with Very Noisy Devices , 1998 .

[25]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[26]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[27]  John Preskill,et al.  Fault-tolerant quantum computation with long-range correlated noise. , 2006, Physical review letters.

[28]  M. Ben-Or,et al.  Limitations of Noisy Reversible Computation , 1996, quant-ph/9611028.

[29]  Dorit Aharonov,et al.  Polynomial simulations of decohered quantum computers , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[30]  G. Kalai Thoughts on Noise and Quantum Computation , 2005, quant-ph/0508095.

[31]  J. Preskill Quantum computing: pro and con , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  Rochus Klesse,et al.  Quantum error correction in spatially correlated quantum noise. , 2005, Physical review letters.

[33]  Leonid A. Levin,et al.  The Tale of One-Way Functions , 2000, Probl. Inf. Transm..

[34]  Gil Kalai,et al.  How Quantum Computers Can Fail , 2006, quant-ph/0607021.

[35]  R. Landauer The physical nature of information , 1996 .

[36]  Unruh Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[37]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.