Predicting material properties of concrete from ground-penetrating radar attributes

We present here a laboratory-based experimental protocol that seeks to establish and characterize the relationship between ground-penetrating radar attributes and the mechanical properties (density...

[1]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[2]  J. Nash,et al.  River flow forecasting through conceptual models part I — A discussion of principles☆ , 1970 .

[3]  R. V. Allen,et al.  Automatic earthquake recognition and timing from single traces , 1978, Bulletin of the Seismological Society of America.

[4]  M. Taner,et al.  Complex seismic trace analysis , 1979 .

[5]  A. P. Annan,et al.  Electromagnetic determination of soil water content: Measurements in coaxial transmission lines , 1980 .

[6]  R G Burg,et al.  ENGINEERING PROPERTIES OF COMMERCIALLY AVAILABLE HIGH-STRENGTH CONCRETES , 1992 .

[7]  N. Altman An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression , 1992 .

[8]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[9]  Vladimir Cherkassky,et al.  Learning from data , 1998 .

[10]  R. Knight,et al.  Dielectric constant as a predictor of porosity in dry volcanic rocks , 1999 .

[11]  Steve Millard,et al.  Dielectric properties of concrete and their influence on radar testing , 2000 .

[12]  Gary R. Olhoeft,et al.  Maximizing the information return from ground penetrating radar , 2000 .

[13]  Gary R. Olhoeft,et al.  Automatic processing and modeling of GPR data for pavement thickness and properties , 2000, International Conference on Ground Penetrating Radar.

[14]  J. Rhazi,et al.  Influence of concrete relative humidity on the amplitude of Ground-Penetrating radar (GPR) signal , 2002 .

[15]  Susan S. Hubbard,et al.  EXPERIMENTAL DETECTION OF REINFORCING BAR CORROSION USING NONDESTRUCTIVE GEOPHYSICAL TECHNIQUES , 2003 .

[16]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[17]  K. Marfurt,et al.  Seismic attributes — A historical perspective , 2005 .

[18]  J. Rhazi,et al.  Non-destructive evaluation of concrete moisture by GPR: Experimental study and direct modeling , 2005 .

[19]  Harry M. Jol,et al.  Texture-based classification of ground-penetrating radar images , 2006 .

[20]  Denis Mitchell,et al.  Material performance lessons , 2008 .

[21]  Kurt J. Marfurt,et al.  Emerging and future trends in seismic attributes , 2008 .

[22]  Karen L. Scrivener,et al.  Innovation in use and research on cementitious material , 2008 .

[23]  Christopher L. Barnes,et al.  Improved concrete bridge deck evaluation using GPR by accounting for signal depth–amplitude effects , 2008 .

[24]  Marie D. Jackson,et al.  Assessment of material characteristics of ancient concretes, Grande Aula, Markets of Trajan, Rome , 2009 .

[25]  Chi Sun Poon,et al.  Characterization of concrete properties from dielectric properties using ground penetrating radar , 2009 .

[26]  Herbert Wiggenhauser,et al.  A Study of Concrete Hydration and Dielectric Relaxation Mechanism Using Ground Penetrating Radar and Short-Time Fourier Transform , 2010, EURASIP J. Adv. Signal Process..

[27]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[28]  Imad L. Al-Qadi,et al.  Development and validation for in situ asphalt mixture density prediction models , 2011 .

[29]  Efficacy of ASTM Saturation Techniques for Measuring the Water Absorption of Concrete , 2011 .

[30]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[31]  D. Breysse,et al.  Nondestructive evaluation of concrete strength: An historical review and a new perspective by combining NDT methods , 2012 .

[32]  Urs Böniger,et al.  Subsurface Utility Extraction and Characterization: Combining GPR Symmetry and Polarization Attributes , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Giovanni Leucci,et al.  Ground Penetrating Radar: an Application to Estimate Volumetric Water Content and Reinforced Bar Diameter in Concrete Structures , 2012 .

[34]  Harry Vereecken,et al.  Quantitative conductivity and permittivity estimation using full-waveform inversion of on-ground GPR data , 2012 .

[35]  D. Benavente,et al.  Sedimentary structures and physical properties of travertine and carbonate tufa building stone , 2012 .

[36]  Leonardo Vanneschi,et al.  Prediction of high performance concrete strength using Genetic Programming with geometric semantic genetic operators , 2013, Expert Syst. Appl..

[37]  E. Forte,et al.  Ground Penetrating Radar (GPR) attribute analysis for archaeological prospection , 2013 .

[38]  V. Pérez-Gracia,et al.  Non-destructive analysis in cultural heritage buildings: Evaluating the Mallorca cathedral supporting structures , 2013 .

[39]  Eugen Brühwiler,et al.  Full-waveform GPR inversion to assess chloride gradients in concrete , 2013 .

[40]  J. Wallace,et al.  Calibration and correction procedures for cosmic‐ray neutron soil moisture probes located across Australia , 2014 .

[41]  Waleed Al-Nuaimy,et al.  Spectral analysis of ground penetrating radar signals in concrete, metallic and plastic targets , 2014 .

[42]  Jui-Sheng Chou,et al.  Machine learning in concrete strength simulations: Multi-nation data analytics , 2014 .

[43]  Motoyuki Sato,et al.  in situ measurement of pavement thickness and dielectric permittivity by GPR using an antenna array , 2014 .

[44]  Stefan Hurlebaus,et al.  Noncontact techniques for monitoring of tunnel linings , 2014 .

[45]  Harry Vereecken,et al.  Improved Characterization of Fine-Texture Soils Using On-Ground GPR Full-Waveform Inversion , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[46]  Sherif Yehia,et al.  Investigation of concrete mix variations and environmental conditions on defect detection ability using GPR , 2014 .

[47]  Alessandro Galli,et al.  A controlled experiment to investigate the correlation between early-time signal attributes of ground-coupled radar and soil dielectric properties , 2014 .

[48]  Denys Breysse,et al.  Non-destructive strength evaluation of concrete: Analysis of some key factors using synthetic simulations , 2015 .

[49]  Jan Vanderborght,et al.  Imaging and characterization of facies heterogeneity in an alluvial aquifer using GPR full-waveform inversion and cone penetration tests , 2015 .

[50]  V. Pérez-Gracia,et al.  Evaluation of the GPR frequency spectra in asphalt pavement assessment , 2015 .

[51]  Michele Pipan,et al.  High-resolution glacier imaging and characterization by means of GPR attribute analysis , 2016 .

[52]  Fabio Radicioni,et al.  Inside the polygonal walls of Amelia (Central Italy): A multidisciplinary data integration, encompassing geodetic monitoring and geophysical prospections , 2016 .

[53]  Thomas Hills,et al.  Carbon Capture in the Cement Industry: Technologies, Progress, and Retrofitting. , 2016, Environmental science & technology.

[54]  Jens Tronicke,et al.  Attribute-based analysis of time-lapse ground-penetrating radar data , 2016 .

[55]  Tom Scullion,et al.  Application of ground-penetrating radar in measuring the density of asphalt pavements and its relationship to mechanical properties , 2016 .

[56]  Syahrul Fithry Senin,et al.  Ground penetrating radar wave attenuation models for estimation of moisture and chloride content in concrete slab , 2016 .

[57]  Norbert J. Delatte,et al.  Advancing Concrete Strength Prediction using Non-destructive Testing: Development and Verification of a Generalizable Model , 2016 .

[58]  Xavier Derobert,et al.  Development of a multi-linear quadratic experimental design for the EM characterization of concretes in the radar frequency-band , 2017 .

[59]  J. Brito,et al.  Structural concrete with simultaneous incorporation of fine and coarse recycled concrete aggregates: Mechanical, durability and long-term properties , 2017 .

[60]  Peter Annan,et al.  A review of Ground Penetrating Radar application in civil engineering: A 30-year journey from Locating and Testing to Imaging and Diagnosis , 2017, NDT & E International.

[61]  Nenad Gucunski,et al.  An algorithm for automatic localization and detection of rebars from GPR data of concrete bridge decks , 2018 .

[62]  Ying Zhang,et al.  A strategy to apply machine learning to small datasets in materials science , 2018, npj Computational Materials.

[63]  Roberto Greco,et al.  Moisture Measurements in Heritage Masonries: A Review of Current Techniques , 2018 .

[64]  Jean-Paul Balayssac,et al.  Development of a calibration methodology to improve the on-site non-destructive evaluation of concrete durability indicators , 2018 .

[65]  Robbie M. Andrew,et al.  Global CO2 emissions from cement production, 1928–2018 , 2018, Earth System Science Data.

[66]  İ. Kaplanvural,et al.  Volumetric water content estimation of C-30 concrete using GPR , 2018 .

[67]  Jordan M. Malof,et al.  On Choosing Training and Testing Data for Supervised Algorithms in Ground-Penetrating Radar Data for Buried Threat Detection , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[68]  Zaher Mundher Yaseen,et al.  Predicting compressive strength of lightweight foamed concrete using extreme learning machine model , 2018, Adv. Eng. Softw..

[69]  Huiyu Zhou,et al.  Using deep neural network with small dataset to predict material defects , 2019, Materials & Design.