Dynamic Depth Fusion and Transformation for Monocular 3D Object Detection

[1]  Yan Lu,et al.  MonoGRNet: A Geometric Reasoning Network for Monocular 3D Object Localization , 2018, AAAI.

[2]  Bin Yang,et al.  PIXOR: Real-time 3D Object Detection from Point Clouds , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[3]  Steven L. Waslander,et al.  Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Trevor Darrell,et al.  Deep Layer Aggregation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[5]  Dan Xu,et al.  Dynamic Graph Message Passing Networks , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Jiashi Feng,et al.  Strip Pooling: Rethinking Spatial Pooling for Scene Parsing , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Yi Li,et al.  Deformable Convolutional Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[8]  Leonidas J. Guibas,et al.  Frustum PointNets for 3D Object Detection from RGB-D Data , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[9]  Philip H. S. Torr,et al.  Dual Graph Convolutional Network for Semantic Segmentation , 2019, BMVC.

[10]  Adrien Gaidon,et al.  ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Dacheng Tao,et al.  Deep Ordinal Regression Network for Monocular Depth Estimation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[12]  Huimin Ma,et al.  3D Object Proposals for Accurate Object Class Detection , 2015, NIPS.

[13]  Xingyi Zhou,et al.  Objects as Points , 2019, ArXiv.

[14]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Haojie Li,et al.  Accurate Monocular 3D Object Detection via Color-Embedded 3D Reconstruction for Autonomous Driving , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[16]  Xiaogang Wang,et al.  PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Xiaoming Liu,et al.  M3D-RPN: Monocular 3D Region Proposal Network for Object Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[18]  Bernt Schiele,et al.  Kinematic 3D Object Detection in Monocular Video , 2020, ECCV.

[19]  Yin Zhou,et al.  VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[20]  Jia Deng,et al.  Stacked Hourglass Networks for Human Pose Estimation , 2016, ECCV.

[21]  Bin Yang,et al.  Deep Continuous Fusion for Multi-sensor 3D Object Detection , 2018, ECCV.

[22]  Varun Ramakrishna,et al.  Convolutional Pose Machines , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[24]  Yan Wang,et al.  Pseudo-LiDAR From Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Andrea Simonelli,et al.  Disentangling Monocular 3D Object Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[26]  Jana Kosecka,et al.  3D Bounding Box Estimation Using Deep Learning and Geometry , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Taesung Park,et al.  Semantic Image Synthesis With Spatially-Adaptive Normalization , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Li Zhang,et al.  Global Aggregation then Local Distribution in Fully Convolutional Networks , 2019, BMVC.

[29]  Serge J. Belongie,et al.  Arbitrary Style Transfer in Real-Time with Adaptive Instance Normalization , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[30]  Bin Xu,et al.  Multi-level Fusion Based 3D Object Detection from Monocular Images , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[31]  Jiwen Lu,et al.  Deep Fitting Degree Scoring Network for Monocular 3D Object Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Xiaogang Wang,et al.  GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Qiang Wang,et al.  Fast Online Object Tracking and Segmentation: A Unifying Approach , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Jianping Shi,et al.  Improving Semantic Segmentation via Decoupled Body and Edge Supervision , 2020, ECCV.

[35]  Sanja Fidler,et al.  Monocular 3D Object Detection for Autonomous Driving , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Shaojie Shen,et al.  Stereo R-CNN Based 3D Object Detection for Autonomous Driving , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Ji Wan,et al.  Multi-view 3D Object Detection Network for Autonomous Driving , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Guodong Guo,et al.  Self-supervised Video Object Segmentation , 2020, ArXiv.