Numerical pricing of options using high-order compact finite difference schemes
暂无分享,去创建一个
[1] Xiaonan Wu,et al. A Fast Numerical Method for the Black-Scholes Equation of American Options , 2003, SIAM J. Numer. Anal..
[2] Graham F. Carey,et al. A high-order compact formulation for the 3D Poisson equation , 1996 .
[3] Dietmar Leisen,et al. Binomial models for option valuation - examining and improving convergence , 1995 .
[4] R. K. Mohanty,et al. A fourth order difference method for the one‐dimensional general quasilinear parabolic partial differential equation , 1990 .
[5] Rüdiger U. Seydel. Tools for Computational Finance (Universitext) , 2006 .
[6] Brian J. McCartin,et al. Accurate and efficient pricing of vanilla stock options via the Crandall-Douglas scheme , 2003, Appl. Math. Comput..
[7] Graham F. Carey,et al. Extension of high‐order compact schemes to time‐dependent problems , 2001 .
[8] Muddun Bhuruth,et al. A fast high-order finite difference algorithm for pricing American options , 2008 .
[9] Curt Randall,et al. Pricing Financial Instruments: The Finite Difference Method , 2000 .
[10] Frank Cuypers. Tools for Computational Finance , 2003 .
[11] S. Heston. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .
[12] Daniel N. Ostrov,et al. On the Early Exercise Boundary of the American Put Option , 2002, SIAM J. Appl. Math..
[13] Bengt Fornberg,et al. Classroom Note: Calculation of Weights in Finite Difference Formulas , 1998, SIAM Rev..