Does Deblurring Improve Geometrical Hyperspectral Unmixing?

In this paper, we consider hyperspectral unmixing problems where the observed images are blurred during the acquisition process, e.g., in microscopy and spectroscopy. We derive a joint observation and mixing model and show how it affects end-member identifiability within the geometrical unmixing framework. An analysis of the model reveals that nonnegative blurring results in a contraction of both the minimum-volume enclosing and maximum-volume enclosed simplex. We demonstrate this contraction property in the case of a spectrally invariant point-spread function. The benefit of prior deconvolution on the accuracy of the restored sources and abundances is illustrated using simulated and real Raman spectroscopic data.

[1]  Paul Honeine,et al.  Approches géométriques pour l'estimation des fractions d'abondance en traitement de données hyperspectrales. Extensions aux modèles de mélange non linéaires , 2013, Traitement du Signal.

[2]  Maurice D. Craig,et al.  Minimum-volume transforms for remotely sensed data , 1994, IEEE Trans. Geosci. Remote. Sens..

[3]  Chein-I Chang,et al.  Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery , 2001, IEEE Trans. Geosci. Remote. Sens..

[4]  Michael K. Ng,et al.  Deblurring and Sparse Unmixing for Hyperspectral Images , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[5]  Yücel Altunbasak,et al.  Super-resolution reconstruction of hyperspectral images , 2004, IEEE Transactions on Image Processing.

[6]  José M. Bioucas-Dias,et al.  Vertex component analysis: a fast algorithm to unmix hyperspectral data , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Antonio J. Plaza,et al.  Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[8]  Chein-I Chang,et al.  Estimation of number of spectrally distinct signal sources in hyperspectral imagery , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Hervé Carfantan,et al.  PSF estimation of hyperspectral data acquisition system for ground-based astrophysical observations , 2011, 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS).

[10]  YUNHONG ZHOU,et al.  Algorithms for a Minimum Volume Enclosing Simplex in Three Dimensions , 2002, SIAM J. Comput..

[11]  J. Zerubia,et al.  Gaussian approximations of fluorescence microscope point-spread function models. , 2007, Applied optics.

[12]  José M. Bioucas-Dias,et al.  A variable splitting augmented Lagrangian approach to linear spectral unmixing , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[13]  Chein-I Chang,et al.  Multispectral and hyperspectral image analysis with convex cones , 1999, IEEE Trans. Geosci. Remote. Sens..

[14]  Thomas De Beer,et al.  Reference database of Raman spectra of pharmaceutical excipients , 2009 .

[15]  Chein-I Chang,et al.  A New Growing Method for Simplex-Based Endmember Extraction Algorithm , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Chong-Yung Chi,et al.  A Convex Analysis-Based Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing , 2009, IEEE Transactions on Signal Processing.

[17]  Li-Jun Zhao,et al.  Raman spectroscopic studies on single supersaturated droplets of sodium and magnesium acetate. , 2005, The journal of physical chemistry. A.

[18]  J. Greve,et al.  Axial resolution of confocal Raman microscopes: Gaussian beam theory and practice , 1997 .

[19]  David Mary,et al.  Processing MUSE hyperspectral data: Denoising, deconvolution and detection of astrophysical sources , 2012 .

[20]  José M. Bioucas-Dias,et al.  Hyperspectral Subspace Identification , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Charles Soussen,et al.  Fast Positive Deconvolution of Hyperspectral Images , 2013, IEEE Transactions on Image Processing.

[22]  Wei-Chiang Li,et al.  On the endmember identifiability of Craig's criterion for hyperspectral unmixing: A statistical analysis for three-source case , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[23]  David Brie,et al.  Non-negative source separation: range of admissible solutions and conditions for the uniqueness of the solution , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[24]  Hairong Qi,et al.  Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[25]  José M. P. Nascimento,et al.  Signal subspace identification in hyperspectral imagery , 2012 .

[26]  Paul Honeine,et al.  Geometric Unmixing of Large Hyperspectral Images: A Barycentric Coordinate Approach , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Peter Gritzmann,et al.  On the complexity of some basic problems in computational convexity: I. Containment problems , 1994, Discret. Math..

[28]  Mario Winter,et al.  N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.