Temperature-dependent Raman scattering study of the defect pyrochlores RbNbWO6 and CsTaWO6

Lattice dynamics calculations and temperature-dependent Raman scattering experiments were performed on RbNbWO6 and CsTaWO6 pyrochlore oxides. The observed bands were assigned to the respective motions of atoms in the unit cell. The spectra showed the presence of additional Raman bands not allowed for by the cubic structure. We have shown that these bands appear due to both substitutional disorder in the 16c sites and displacive disorder of the A ions. Raman studies also revealed the presence of an additional 80 cm−1 band at room temperature for RbNbWO6, not observed for CsTaWO6. The presence of this band has been attributed to off-center displacement of the Nb and W ions due to structural phase transition into a tetragonal ferroelectric phase. The temperature evolution of the 80 cm−1 band intensity revealed that it disappeared at a much higher temperature (about 650 K) than the reported phase transition temperature (about 360 K). This behavior is reminiscent of chemically disordered perovskite ferroelectrics, including relaxor ferroelectrics, and was attributed to the presence of small polar regions with local tetragonal distortion embedded in the paraelectric matrix of the structure.

[1]  S. Kojima,et al.  Temperature-dependent IR and Raman scattering studies of phase transitions in K2MgWO2(PO4)2 , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  M. Sanjuán,et al.  Raman and x-ray absorption spectroscopy study of the phase evolution induced by mechanical milling and thermal treatments in R2Ti2O7 pyrochlores , 2011 .

[3]  A. Friedrich,et al.  High-pressure Raman spectroscopy and lattice-dynamics calculations on scintillating MgWO4: Comparison with isomorphic compounds , 2011, 1107.0160.

[4]  M. Ma̧czka,et al.  Lattice dynamics and temperature-dependent Raman and infrared studies of multiferroic Mn0.85Co0.15WO4and Mn0.97Fe0.03WO4crystals , 2011 .

[5]  M. Ma̧czka,et al.  Raman and IR studies of TaWO5.5, ASbWO6 (A = K, Rb, Cs, Tl), and ASbWO6·H2O (A = H, NH4, Li, Na) pyrochlore oxides , 2011 .

[6]  M. Ma̧czka,et al.  Phonon properties of nanosized bismuth layered ferroelectric material—Bi2WO6 , 2010 .

[7]  M. Ma̧czka,et al.  Thermodynamic modeling, structural and spectroscopic studies of the KNbWO6–KSbWO6–KTaWO6 system , 2010 .

[8]  C. Paulmann,et al.  The crystal structure of Cd2Nb2O7: symmetry mode analysis of the ferroelectric phase , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  M. Ma̧czka,et al.  Temperature-dependent studies of the geometrically frustrated pyrochlores Ho 2 Ti 2 O 7 and Dy 2 Ti 2 O 7 , 2009 .

[10]  M. Ma̧czka,et al.  Thermodynamic properties of rubidium niobium tungsten oxide , 2009 .

[11]  A. Polian,et al.  Phase transitions in wolframite-type CdWO 4 at high pressure studied by Raman spectroscopy and density-functional theory , 2009 .

[12]  Subrata Roy,et al.  Synthesis and characterization of niobium-doped potassium tetragonal tungsten bronzes, KxNbyW1−yO3 , 2009 .

[13]  M. Ma̧czka,et al.  Temperature-dependent Raman study of the spin-liquid pyrochloreTb2Ti2O7 , 2008 .

[14]  M. Itoh,et al.  Ferroelectric phase transition of Cd 2 Nb 2 O 7 studied by Raman scattering , 2008 .

[15]  K. Doll,et al.  Phonons and crystal structures of the β -pyrochlore superconductors KOs 2 O 6 and RbOs 2 O 6 from micro-Raman spectroscopy , 2008 .

[16]  A. Markin,et al.  Crystal structure and thermodynamic properties of cesium tantalum tungsten oxide , 2008 .

[17]  R. Withers,et al.  Diffuse scattering in the cesium pyrochlore CsTi0.5W1.5O6 , 2008 .

[18]  M. Ma̧czka,et al.  Temperature‐dependent Raman scattering studies of the geometrically frustrated pyrochlores Dy2Ti2O7, Gd2Ti2O7 and Er2Ti2O7 , 2008 .

[19]  D. Tanner,et al.  Raman study of the phonon modes in bismuth pyrochlores , 2008 .

[20]  Takumi Hasegawa,et al.  Raman scattering in K Os 2 O 6 , 2008 .

[21]  R. Stosch,et al.  High-temperature structural transformations in the relaxor ferroelectrics PbSc0.5 Ta0.5 O3 and Pb0.78 Ba0.22 Sc0.5 Ta0.5 O3 , 2008 .

[22]  M. Ma̧czka,et al.  Influence of thermally induced oxygen order on mobile ion dynamics in Gd_(2)(Ti_(0.65)Zr_(0.35))_(2)O_(7) , 2007 .

[23]  M. Ma̧czka,et al.  Structural manipulation of pyrochlores: Thermal evolution of metastable Gd2(Ti1−yZry)2O7 powders prepared by mechanical milling , 2006 .

[24]  J. Greedan Frustrated rare earth magnetism: Spin glasses, spin liquids and spin ices in pyrochlore oxides , 2006 .

[25]  Nikolai Zhigadlo,et al.  Crystal growth, structure, and superconducting properties of the β -pyrochlore K Os 2 O 6 , 2006, cond-mat/0601465.

[26]  R. Jin,et al.  Temperature-Dependent Raman Study of the Pyrochlore Superconductor Cd2Re2O7 , 2006 .

[27]  Jean Toulouse,et al.  Temperature evolution of the relaxor dynamics in Pb ( Zn 1 ∕ 3 Nb 2 ∕ 3 ) O 3 : A critical Raman analysis , 2005 .

[28]  Jerzy Hanuza,et al.  Synthesis of disordered pyrochlores, A2Ti2O7 (A = Y, Gd and Dy), by mechanical milling of constituent oxides , 2005 .

[29]  Z. Hiroi,et al.  Unprecedented Superconductivity in -Pyrochlore Osmate KOs 2 O 6 , 2004 .

[30]  A. G. S. Filho,et al.  High-pressure Raman study of Al2(WO4)3 , 2004 .

[31]  S. Kojima,et al.  Heat capacity and dielectric studies of ferroelectric superionic conductor RbNbWO6 , 2004 .

[32]  H. C. Gupta,et al.  Lattice dynamical study of optical modes in Tl 2 Mn 2 O 7 and In 2 Mn 2 O 7 pyrochlores , 2004, cond-mat/0401076.

[33]  S. Kojima,et al.  Brillouin scattering in RbNbWO6 , 2003 .

[34]  P. Woodward,et al.  Pressure-induced cation migration and volume expansion in the defect pyrochlores ANbWO6 (A = NH4+, Rb+, H+, K+). , 2003, Journal of the American Chemical Society.

[35]  R. L. Moreira,et al.  Disorder-induced symmetry lowering in the CsInMgF 6 pyrochlore crystal , 2002 .

[36]  Z. Hiroi,et al.  Low Temperature Symmetry of Pyrochlore Oxide Cd 2 Re 2 O 7 , 2002, cond-mat/0207497.

[37]  M. Ma̧czka,et al.  Vibrational properties of ferroelectric hexagonal tungsten bronzes ABxW3−xO9, where A = K, Rb, Cs and B = Nb, Ta, Zr, Cr , 2001 .

[38]  T. Sakakibara,et al.  Superconductivity at 1 K in Cd2Re2O7 , 2001 .

[39]  J. Kondo,et al.  Vibrational Study of Layered Perovskites M2La2Ti3O10 (M = Li, Na, K, Rb): Raman Spectra and Normal Mode Analysis , 2001 .

[40]  R. Choudhary,et al.  Structural dielectric and electrical conducting properties of KB′B″O6 (B′=Nb, Ta; B″=W, Mo) ceramics , 2001 .

[41]  S. Kojima,et al.  Vibrational spectra of KNbW2O9 hexagonal tungsten bronze , 2001 .

[42]  H. C. Gupta,et al.  Lattice dynamic investigation of the zone center wavenumbers of the cubic A2Ti2O7 pyrochlores , 2001 .

[43]  J. Haines,et al.  Crystal Structure and Phase Transition in the Defect Pyrochlore NH4NbWO6 , 1998 .

[44]  B. Mihailova,et al.  Raman spectroscopy study of pyrochlore Pb2Sc0.5Ta1.5O6.5 crystals , 1997 .

[45]  B. Kennedy,et al.  Surface Segregation and Oxygen Vacancy Ordering in Defect Pyrochlores , 1997 .

[46]  R. Harlow,et al.  NH4CoAlF6 : A pyrochlore-related phase existing in both ordered and disordered forms , 1996 .

[47]  M. E. Leonowicz,et al.  Neutron diffraction investigation of ordered oxygen vacancies in the defect pyrochlores, Pb2Ru2O6.5 and PbT1Nb2O6.5 , 1984 .

[48]  J. Pannetier Phase transition in RbNbWO6: The pyrochlore structure revisited , 1980 .

[49]  A. Sleight,et al.  Acentricity and phase transitions for some AM2X6 compounds , 1978 .