Probabilistic Guarded P Systems, A New Formal Modelling Framework

Multienvironment P systems constitute a general, formal framework for modelling the dynamics of population biology, which consists of two main approaches: stochastic and probabilistic. The framework has been successfully used to model biologic systems at both micro (e.g. bacteria colony) and macro (e.g. real ecosystems) levels, respectively.

[1]  Mario J. Pérez-Jiménez,et al.  A bio-inspired computing model as a new tool for modeling ecosystems: The avian scavengers as a case study , 2011 .

[2]  Oscar H. Ibarra,et al.  Simulating FAS-induced apoptosis by using P systems , 2007 .

[3]  Mario J. Pérez-Jiménez,et al.  P Systems, a New Computational Modelling Tool for Systems Biology , 2006, Trans. Comp. Sys. Biology.

[4]  Mario J. Pérez-Jiménez,et al.  DCBA: Simulating Population Dynamics P Systems with Proportional Object Distribution , 2012, Int. Conf. on Membrane Computing.

[5]  C. S. Davis The computer generation of multinomial random variates , 1993 .

[6]  Mario J. Pérez-Jiménez,et al.  A uniform framework for modeling based on P systems , 2010, 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA).

[7]  Mario J. Pérez-Jiménez,et al.  Modeling Population Growth of Pyrenean Chamois (Rupicapra p. pyrenaica) by Using P-Systems , 2010, Int. Conf. on Membrane Computing.

[8]  Britton C. Goodale,et al.  Modelling the impacts of two exotic invasive species on a native butterfly: top-down vs. bottom-up effects. , 2006, The Journal of animal ecology.

[9]  Natalio Krasnogor,et al.  The Infobiotics Workbench: an integrated in silico modelling platform for Systems and Synthetic Biology , 2011, Bioinform..

[10]  Florentin Ipate,et al.  Kernel P Systems - Version 1 , 2013 .

[11]  F. S. Chew,et al.  Escaping an evolutionary trap: preference and performance of a native insect on an exotic invasive host , 2008, Oecologia.

[12]  Mario J. Pérez-Jiménez,et al.  Computational complexity of tissue-like P systems , 2010, J. Complex..

[13]  Andrei Paun,et al.  P Systems with Proteins on Membranes , 2006, Fundam. Informaticae.

[14]  Mario J. Pérez-Jiménez,et al.  An Overview of P-Lingua 2.0 , 2009, Workshop on Membrane Computing.

[15]  Mario J. Pérez-Jiménez,et al.  A Model of the Quorum Sensing System in Vibrio fischeri Using P Systems , 2008, Artificial Life.

[16]  F. S. Chew Coexistence and Local Extinction in Two Pierid Butterflies , 1981, The American Naturalist.

[17]  Mario J. Pérez-Jiménez,et al.  Modelling gene expression control using P systems: The Lac Operon, a case study , 2008, Biosyst..

[18]  Mario J. Pérez-Jiménez,et al.  MeCoSim: A general purpose software tool for simulating biological phenomena by means of P systems , 2010, 2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA).

[19]  Agustín Riscos-Núñez,et al.  Membrane System-Based Models for Specifying Dynamical Population Systems , 2014 .

[20]  Mario J. Pérez-Jiménez,et al.  A computational modeling for real ecosystems based on P systems , 2011, Natural Computing.

[21]  Mario J. Pérez-Jiménez,et al.  A Simulation Algorithm for Multienvironment Probabilistic P Systems: a Formal Verification , 2011, Int. J. Found. Comput. Sci..

[22]  Gheorghe Paun,et al.  The Oxford Handbook of Membrane Computing , 2010 .

[23]  Pierluigi Frisco,et al.  Applications of Membrane Computing in Systems and Synthetic Biology , 2014 .

[24]  Anne C. Elster,et al.  Population Dynamics P Systems on CUDA , 2012, CMSB.

[25]  Gheorghe Paun,et al.  Computing with Membranes , 2000, J. Comput. Syst. Sci..