A new method for the level set equation using a hierarchical-gradient truncation and remapping technique

a b s t r a c t We present a novel numerical method for solving the advection equation for a level set function. The new method uses hierarchical-gradient truncation and remapping (H-GTaR) of the original partial differential equation (PDE). Our strategy reduces the original PDE to a set of decoupled linear ordinary differential equations with constant coefficients. Additionally, we introduce a remapping strategy to periodically guarantee solution accuracy for a deformation problem. The proposed scheme yields nearly an exact solution for a rigid body motion with a smooth function that possesses vanishingly small higher derivatives and calculates the gradient of the advected function in a straightforward way. We will evaluate our method in one- and two-dimensional domains and present results to several classical benchmark problems.

[1]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[2]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[3]  Takahiko Tanahashi,et al.  Numerical analysis of moving interfaces using a level set method coupled with adaptive mesh refinement , 2004 .

[4]  Andrew J. Christlieb,et al.  A conservative high order semi-Lagrangian WENO method for the Vlasov equation , 2010, J. Comput. Phys..

[5]  Takehiro Himeno,et al.  Numerical Analysis for Propellant Management in Rocket Tanks , 2005 .

[6]  R. LeVeque High-resolution conservative algorithms for advection in incompressible flow , 1996 .

[7]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[8]  Frédéric Gibou,et al.  A second order accurate level set method on non-graded adaptive cartesian grids , 2007, J. Comput. Phys..

[9]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[10]  E. Sonnendrücker,et al.  The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .

[11]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[12]  G. Knorr,et al.  The integration of the vlasov equation in configuration space , 1976 .

[13]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[14]  Mark Sussman,et al.  An Efficient, Interface-Preserving Level Set Redistancing Algorithm and Its Application to Interfacial Incompressible Fluid Flow , 1999, SIAM J. Sci. Comput..

[15]  K. Bathe Finite Element Procedures , 1995 .

[16]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[17]  Benjamin Seibold,et al.  A gradient-augmented level set method with an optimally local, coherent advection scheme , 2009, J. Comput. Phys..

[18]  Jeffrey S. Scroggs,et al.  A forward-trajectory global semi-Lagrangian transport scheme , 2003 .

[19]  Takashi Yabe,et al.  Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic-type equations , 1985 .

[20]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[21]  Frédéric Gibou,et al.  A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change , 2007, J. Comput. Phys..

[22]  T. Yabe,et al.  The constrained interpolation profile method for multiphase analysis , 2001 .

[23]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Takayuki Aoki,et al.  Interpolated differential operator (IDO) scheme for solving partial differential equations , 1997 .