Accelerated Dimension-Independent Adaptive Metropolis
暂无分享,去创建一个
Yuxin Chen | David E. Keyes | Hatem Ltaief | Kody J. H. Law | D. Keyes | K. Law | H. Ltaief | Yuxin Chen
[1] G. Fort,et al. Convergence of adaptive and interacting Markov chain Monte Carlo algorithms , 2011, 1203.3036.
[2] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[3] C. Geyer. Markov Chain Monte Carlo Maximum Likelihood , 1991 .
[4] G. Roberts,et al. Optimal scalings of Metropolis-Hastings algorithms for non-product targets in high dimensions , 2009 .
[5] Franck Cappello,et al. The International Exascale Software Project: a Call To Cooperative Action By the Global High-Performance Community , 2009, Int. J. High Perform. Comput. Appl..
[6] S. Shreve,et al. Stochastic differential equations , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.
[7] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[8] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[9] Jack Dongarra,et al. QUARK Users' Guide: QUeueing And Runtime for Kernels , 2011 .
[10] Geoffrey E. Hinton,et al. Bayesian Learning for Neural Networks , 1995 .
[11] Christophe Andrieu,et al. A tutorial on adaptive MCMC , 2008, Stat. Comput..
[12] J. Rosenthal,et al. Optimal scaling for various Metropolis-Hastings algorithms , 2001 .
[13] Chao Yang,et al. Learn From Thy Neighbor: Parallel-Chain and Regional Adaptive MCMC , 2009 .
[14] Kody J. H. Law. Proposals which speed up function-space MCMC , 2014, J. Comput. Appl. Math..
[15] Radu V. Craiu,et al. Multiprocess parallel antithetic coupling for backward and forward Markov Chain Monte Carlo , 2005, math/0505631.
[16] P. Priouret,et al. A central limit theorem for adaptive and interacting Markov chains , 2011, 1107.2574.
[17] Jonathan C. Mattingly,et al. SPDE limits of the random walk Metropolis algorithm in high dimensions , 2009 .
[18] T. Faniran. Numerical Solution of Stochastic Differential Equations , 2015 .
[19] B. Matérn. Spatial variation : Stochastic models and their application to some problems in forest surveys and other sampling investigations , 1960 .
[20] C. Andrieu,et al. On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.
[21] Edward I. George,et al. Bayes and big data: the consensus Monte Carlo algorithm , 2016, Big Data and Information Theory.
[22] Christian P. Robert,et al. Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .
[23] Corporate The MPI Forum,et al. MPI: a message passing interface , 1993, Supercomputing '93.
[24] J. D. Doll,et al. Brownian dynamics as smart Monte Carlo simulation , 1978 .
[25] David B. Dunson,et al. Robust and Scalable Bayes via a Median of Subset Posterior Measures , 2014, J. Mach. Learn. Res..
[26] W. Gilks. Markov Chain Monte Carlo , 2005 .
[27] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[28] G. Roberts,et al. MCMC Methods for Functions: ModifyingOld Algorithms to Make Them Faster , 2012, 1202.0709.
[29] Jack Dongarra,et al. LINPACK Users' Guide , 1987 .
[30] Ben Calderhead,et al. A general construction for parallelizing Metropolis−Hastings algorithms , 2014, Proceedings of the National Academy of Sciences.
[31] Ingvar Strid. Efficient parallelisation of Metropolis-Hastings algorithms using a prefetching approach , 2010, Comput. Stat. Data Anal..
[32] Matti Vihola,et al. Robust adaptive Metropolis algorithm with coerced acceptance rate , 2010, Statistics and Computing.
[33] M. Girolami,et al. Solving large-scale PDE-constrained Bayesian inverse problems with Riemann manifold Hamiltonian Monte Carlo , 2014, 1407.1517.
[34] P. Moral,et al. Sequential Monte Carlo samplers , 2002, cond-mat/0212648.
[35] Max Welling,et al. Austerity in MCMC Land: Cutting the Metropolis-Hastings Budget , 2013, ICML 2014.
[36] Arnaud Doucet,et al. On the Utility of Graphics Cards to Perform Massively Parallel Simulation of Advanced Monte Carlo Methods , 2009, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.
[37] K. Hukushima,et al. Exchange Monte Carlo Method and Application to Spin Glass Simulations , 1995, cond-mat/9512035.
[38] David E. Keyes,et al. KBLAS: An Optimized Library for Dense Matrix-Vector Multiplication on GPU Accelerators , 2014, ACM Trans. Math. Softw..
[39] Alexandre H. Thi'ery,et al. Optimal Scaling and Diffusion Limits for the Langevin Algorithm in High Dimensions , 2011, 1103.0542.
[40] James Martin,et al. A Stochastic Newton MCMC Method for Large-Scale Statistical Inverse Problems with Application to Seismic Inversion , 2012, SIAM J. Sci. Comput..
[41] Y. Marzouk,et al. Large-Scale Inverse Problems and Quantification of Uncertainty , 1994 .
[42] S. Duane,et al. Hybrid Monte Carlo , 1987 .
[43] Huaiyu Zhu. On Information and Sufficiency , 1997 .
[44] Heikki Haario,et al. DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..
[45] Christian P. Robert,et al. Using Parallel Computation to Improve Independent Metropolis–Hastings Based Estimation , 2010, ArXiv.
[46] L. Tierney. A note on Metropolis-Hastings kernels for general state spaces , 1998 .
[47] Claudia Schillings,et al. Scaling Limits in Computational Bayesian Inversion , 2014 .
[48] Cliburn Chan,et al. Understanding GPU Programming for Statistical Computation: Studies in Massively Parallel Massive Mixtures , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.
[49] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[50] A. V. D. Vaart,et al. Convergence rates of posterior distributions , 2000 .
[51] E. Somersalo,et al. Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .
[52] G. Roberts,et al. MCMC methods for diffusion bridges , 2008 .
[53] D. J. Farlie,et al. Prediction and Regulation by Linear Least-Square Methods , 1964 .
[54] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[55] J. Rosenthal,et al. Optimal scaling of discrete approximations to Langevin diffusions , 1998 .
[56] Heikki Haario,et al. Componentwise adaptation for high dimensional MCMC , 2005, Comput. Stat..
[57] Albert Tarantola,et al. Inverse problem theory - and methods for model parameter estimation , 2004 .
[58] V. Bogachev. Gaussian Measures on a , 2022 .
[59] E. Saksman,et al. On the ergodicity of the adaptive Metropolis algorithm on unbounded domains , 2008, 0806.2933.
[60] Andrew Gelman,et al. General methods for monitoring convergence of iterative simulations , 1998 .
[61] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[62] Tiangang Cui,et al. Dimension-independent likelihood-informed MCMC , 2014, J. Comput. Phys..
[63] Darren J. Wilkinson,et al. Parallel Bayesian Computation , 2005 .
[64] Bart G. van Bloemen Waanders,et al. Fast Algorithms for Bayesian Uncertainty Quantification in Large-Scale Linear Inverse Problems Based on Low-Rank Partial Hessian Approximations , 2011, SIAM J. Sci. Comput..
[65] Sebastian J. Vollmer,et al. Dimension-Independent MCMC Sampling for Inverse Problems with Non-Gaussian Priors , 2013, SIAM/ASA J. Uncertain. Quantification.
[66] J. M. Sanz-Serna,et al. Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.
[67] J. Rosenthal,et al. Coupling and Ergodicity of Adaptive Markov Chain Monte Carlo Algorithms , 2007, Journal of Applied Probability.
[68] Heikki Haario,et al. Efficient MCMC for Climate Model Parameter Estimation: Parallel Adaptive Chains and Early Rejection , 2012 .
[69] Peter Green,et al. Markov chain Monte Carlo in Practice , 1996 .
[70] Ryan P. Adams,et al. Firefly Monte Carlo: Exact MCMC with Subsets of Data , 2014, UAI.
[71] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[72] R. Tweedie,et al. Exponential convergence of Langevin distributions and their discrete approximations , 1996 .
[73] Tiangang Cui,et al. Likelihood-informed dimension reduction for nonlinear inverse problems , 2014, 1403.4680.
[74] O. L. Maître,et al. Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .
[75] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[76] C. Schwab,et al. Scaling limits in computational Bayesian inversion , 2014 .