A new formulation for air-blast fluid–structure interaction using an immersed approach: part II—coupling of IGA and meshfree discretizations

In this two-part paper we begin the development of a new class of methods for modeling fluid–structure interaction (FSI) phenomena for air blast. We aim to develop accurate, robust, and practical computational methodology, which is capable of modeling the dynamics of air blast coupled with the structure response, where the latter involves large, inelastic deformations and disintegration into fragments. An immersed approach is adopted, which leads to an a-priori monolithic FSI formulation with intrinsic contact detection between solid objects, and without formal restrictions on the solid motions. In Part I of this paper, the core air-blast FSI methodology suitable for a variety of discretizations is presented and tested using standard finite elements. Part II of this paper focuses on a particular instantiation of the proposed framework, which couples isogeometric analysis (IGA) based on non-uniform rational B-splines and a reproducing-kernel particle method (RKPM), which is a meshfree technique. The combination of IGA and RKPM is felt to be particularly attractive for the problem class of interest due to the higher-order accuracy and smoothness of both discretizations, and relative simplicity of RKPM in handling fragmentation scenarios. A collection of mostly 2D numerical examples is presented in each of the parts to illustrate the good performance of the proposed air-blast FSI framework.

[1]  André Massing,et al.  A Stabilized Nitsche Fictitious Domain Method for the Stokes Problem , 2012, J. Sci. Comput..

[2]  C. D. Boor,et al.  On Calculating B-splines , 1972 .

[3]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[4]  Wing Kam Liu,et al.  Reproducing kernel particle methods for structural dynamics , 1995 .

[5]  Sheng-Wei Chi,et al.  Stabilized and variationally consistent nodal integration for meshfree modeling of impact problems , 2014, CPM 2014.

[6]  Wulf G. Dettmer,et al.  A stabilised immersed boundary method on hierarchical b-spline grids , 2016 .

[7]  Yuri Bazilevs,et al.  Variationally consistent domain integration for isogeometric analysis , 2015 .

[8]  Lisandro Dalcin,et al.  PetIGA: High-Performance Isogeometric Analysis , 2013, ArXiv.

[9]  Y. Burtschell,et al.  Shock wave impacts on deforming panel, an application of fluid-structure interaction , 2005 .

[10]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[11]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[12]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[13]  Bjrn Engquist Encyclopedia of Applied and Computational Mathematics , 2016 .

[14]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[15]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[16]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[17]  S. Bardenhagen,et al.  The Generalized Interpolation Material Point Method , 2004 .

[18]  Stephen L. Wood,et al.  Parallel adaptive fluid–structure interaction simulation of explosions impacting on building structures , 2013 .

[19]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[20]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[21]  Giancarlo Sangalli,et al.  Anisotropic NURBS approximation in isogeometric analysis , 2012 .

[22]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[23]  L. Sedov Similarity and Dimensional Methods in Mechanics , 1960 .

[24]  T. Belytschko,et al.  An implicit gradient model by a reproducing kernel strain regularization in strain localization problems , 2004 .

[25]  Li,et al.  Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .

[26]  Jiun-Shyan Chen,et al.  An arbitrary order variationally consistent integration for Galerkin meshfree methods , 2013 .

[27]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[28]  Jiun-Shyan Chen,et al.  An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics , 2016 .

[29]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[30]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[31]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[32]  Gerald Farin,et al.  NURBS: From Projective Geometry to Practical Use , 1999 .

[33]  M. Cox The Numerical Evaluation of B-Splines , 1972 .

[34]  Jiun-Shyan Chen,et al.  A stabilized conforming nodal integration for Galerkin mesh-free methods , 2001 .

[35]  Thomas Slawson,et al.  Semi-Lagrangian reproducing kernel particle method for fragment-impact problems , 2011 .

[36]  T. Hughes,et al.  A Simple Algorithm for Obtaining Nearly Optimal Quadrature Rules for NURBS-based Isogeometric Analysis , 2012 .

[37]  John A. Evans,et al.  Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .

[38]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[39]  Wing Kam Liu,et al.  Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures , 1996 .