Microwave Imaging by Elastic Deformation

In this paper, we show that by using microwave measurements at different frequencies and ultrasound localized perturbations to create local changes in the medium it is possible to extend the method developed by Ammari et al. in [SIAM J. Appl. Math., 68 (2008), pp. 1557–1573] to problems of the form $\nabla\cdot(a\nabla u)+k^{2}qu=0$ in $\Omega$, $u=\varphi$ on $\partial\Omega$, and to reliably reconstruct both the real-valued functions a and q from the internal energies $a|\nabla u|^2$ and $q|u|^2$.

[1]  G. Bal,et al.  Inverse scattering and acousto-optic imaging. , 2009, Physical review letters.

[2]  Habib Ammari,et al.  Reconstruction of the Optical Absorption Coefficient of a Small Absorber from the Absorbed Energy Density , 2011, SIAM J. Appl. Math..

[3]  Lihong V. Wang,et al.  Photoacoustic imaging in biomedicine , 2006 .

[4]  G. Bao,et al.  Recent Studies on Inverse Medium Scattering Problems , 2008 .

[5]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[6]  H. Ammari,et al.  Reconstruction of Small Inhomogeneities from Boundary Measurements , 2005 .

[7]  H. Ammari,et al.  Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. The full Maxwell equations , 2001 .

[8]  Faouzi Triki,et al.  Uniqueness and stability for the inverse medium problem with internal data , 2010 .

[9]  Eung Je Woo,et al.  Magnetic Resonance Electrical Impedance Tomography (MREIT) , 2011, SIAM Rev..

[10]  Eric Bonnetier,et al.  Enhanced Resolution in Structured Media , 2009, SIAM J. Appl. Math..

[11]  Habib Ammari,et al.  Mathematical models and reconstruction methods in magneto-acoustic imaging , 2009, European Journal of Applied Mathematics.

[12]  Habib Ammari,et al.  An Introduction to Mathematics of Emerging Biomedical Imaging , 2008 .

[13]  J. Greenleaf,et al.  Ultrasound-stimulated vibro-acoustic spectrography. , 1998, Science.

[14]  David C. Dobson,et al.  Convergence of a reconstruction method for the inverse conductivity problem , 1992 .

[15]  Otmar Scherzer,et al.  Impedance-Acoustic Tomography , 2008, SIAM J. Appl. Math..

[16]  Gang Bao,et al.  Inverse scattering by a continuation method with initial guesses from a direct imaging algorithm , 2007, J. Comput. Phys..

[17]  Adrian Nachman,et al.  Reconstruction of Planar Conductivities in Subdomains from Incomplete Data , 2010, SIAM J. Appl. Math..

[18]  Miguel Moscoso,et al.  A level set evolution strategy in microwave imaging for early breast cancer detection , 2008, Comput. Math. Appl..

[19]  P. Kuchment,et al.  Mathematics of thermoacoustic tomography , 2007, European Journal of Applied Mathematics.

[20]  B.D. Van Veen,et al.  Numerical Study of Microwave Scattering in Breast Tissue via Coupled Dielectric and Elastic Contrasts , 2008, IEEE Antennas and Wireless Propagation Letters.

[21]  Gang Bao,et al.  Inverse Medium Scattering Problems for Electromagnetic Waves , 2005, SIAM J. Appl. Math..

[22]  G. Bao,et al.  Inverse medium scattering for the Helmholtz equation at fixed frequency , 2005 .

[23]  Massimo Brignone,et al.  A Visualization Method for Breast Cancer Detection Using Microwaves , 2010, SIAM J. Appl. Math..

[24]  M. Giles,et al.  Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality , 2002, Acta Numerica.

[25]  Ohin Kwon,et al.  On a Nonlinear Partial Differential Equation Arising in Magnetic Resonance Electrical Impedance Tomography , 2002, SIAM J. Math. Anal..

[26]  Eric Bonnetier,et al.  Electrical Impedance Tomography by Elastic Deformation , 2008, SIAM J. Appl. Math..

[27]  Elise C. Fear,et al.  Microwave detection of breast cancer , 2000 .

[28]  Zhong Qing Zhang,et al.  Active microwave imaging. I. 2-D forward and inverse scattering methods , 2002 .

[29]  Ohin Kwon,et al.  A real time algorithm for the location search of discontinuous conductivities with one measurement , 2002 .

[30]  Habib Ammari,et al.  Quantitative Photo-Acoustic Imaging of Small Absorbers , 2009 .

[31]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[32]  M. Vogelius,et al.  Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogen , 2000 .

[33]  Habib Ammari,et al.  A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements , 2007 .

[34]  Ohin Kwon,et al.  T-Scan Electrical Impedance Imaging System for Anomaly Detection , 2004, SIAM J. Appl. Math..

[35]  Jérôme Fehrenbach,et al.  Imaging by Modification: Numerical Reconstruction of Local Conductivities from Corresponding Power Density Measurements , 2009, SIAM J. Imaging Sci..

[36]  Habib Ammari,et al.  Mathematical Modeling in Photoacoustic Imaging of Small Absorbers , 2010, SIAM Rev..