Enhancement of the reactivity of sugarcane bagasse ash for Pozzolan-Lime Paste: Effect of particle size

[1]  Ruijun Wang,et al.  Utilization of sugarcane bagasse ash (SCBA) in construction technology: A state-of-the-art review , 2022, Journal of Building Engineering.

[2]  A. J. Babafemi,et al.  State-of-the-art review on the use of sugarcane bagasse ash in cementitious materials , 2021 .

[3]  L. Lei,et al.  Effectiveness of PCE superplasticizers in calcined clay blended cements , 2021 .

[4]  K. Bilba,et al.  Auto-coherent homogenization applied to the assessment of thermal conductivity: Case of sugar cane bagasse fibers and moisture content effect , 2021 .

[5]  A. Ababneh,et al.  Synthesis of kaolin-based alkali-activated cement: carbon footprint, cost and energy assessment , 2020 .

[6]  I. Meir,et al.  The thermal performance of lime hemp concrete (LHC) with alternative binders , 2020 .

[7]  V. Sairam,et al.  An overview of the influences of mechanical and chemical processing on sugarcane bagasse ash characterisation as a supplementary cementitious material , 2020 .

[8]  P. Montes-García,et al.  The influence of untreated sugarcane bagasse ash on the microstructural and mechanical properties of mortars , 2018 .

[9]  C. Lanos,et al.  Mechanical properties of hemp-clay and hemp stabilized clay composites , 2017 .

[10]  R. Ralegaonkar,et al.  Sugarcane bagasse ash brick as a novel insulator for dwellings , 2017 .

[11]  K. Bilba,et al.  Study of pozzolanic activity of bamboo stem ashes for use as partial replacement of cement , 2017 .

[12]  L. Soriano,et al.  Portland cement, gypsum and fly ash binder systems characterization for lignocellulosic fiber-cement , 2016 .

[13]  S. Ginestet,et al.  Assessment of distilled lavender stalks as bioaggregate for building materials: Hygrothermal properties, mechanical performance and chemical interactions with mineral pozzolanic binder , 2016 .

[14]  J. Provis,et al.  Optimization of the MgOSiO2 binding system for fiber-cement production with cellulosic reinforcing elements , 2016 .

[15]  M. Palou,et al.  STUDY OF HYDRATION PRODUCTS IN THE MODEL SYSTEMS METAKAOLIN – LIME AND METAKAOLIN – LIME – GYPSUM , 2016 .

[16]  Chun-Tao Chen,et al.  Strength development of lime–pozzolana pastes with silica fume and fly ash , 2015 .

[17]  R. D. T. Filho,et al.  Cellulosic fiber reinforced cement-based composites: A review of recent research , 2015 .

[18]  N. Bibi-Triki,et al.  Influence of Humidity on the Apparent Thermal Conductivity of Concrete Pozzolan , 2014 .

[19]  Eva Vejmelková,et al.  Mechanical, fracture-mechanical, hydric, thermal, and durability properties of lime–metakaolin plasters for renovation of historical buildings , 2012 .

[20]  P. Chindaprasirt,et al.  Utilization of bagasse ash in high-strength concrete , 2012 .

[21]  Holmer Savastano,et al.  Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture , 2011 .

[22]  G. Escadeillas,et al.  The Benefits of Incorporating Glycerol Carbonate into an Innovative Pozzolanic Matrix , 2010 .

[23]  L. Turanli,et al.  Pozzolanic activity of clinoptilolite: A comparative study with silica fume, fly ash and a non-zeolitic natural pozzolan , 2010 .

[24]  Eduardo de Moraes Rego Fairbairn,et al.  Effect of calcination temperature on the pozzolanic activity of sugar cane bagasse ash , 2009 .

[25]  Romildo Dias Toledo Filho,et al.  Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete , 2009 .

[26]  Sérgio Francisco dos Santos,et al.  Effects of calcining conditions on the microstructure of sugar cane waste ashes (SCWA): Influence in the pozzolanic activation , 2009 .

[27]  Y. Scudeller,et al.  Mechanical and thermal properties of lime and hemp concrete (“hempcrete”) manufactured by a projection process , 2008 .

[28]  O. Douzane,et al.  Thermal conductivity of cement composites containing rubber waste particles: Experimental study and modelling , 2008 .

[29]  K. Rajagopal,et al.  Evaluation of bagasse ash as supplementary cementitious material , 2007 .

[30]  J. I. Escalante-García,et al.  Composite systems fluorgypsum–blastfurnance slag–metakaolin, strength and microstructures , 2006 .

[31]  Williams Pauchet Les adjuvants des bétons , 2004, Techniques du bâtiment : l'enveloppe du bâtiment.

[32]  Jordi Payá,et al.  Sugar‐cane bagasse ash (SCBA): studies on its properties for reusing in concrete production , 2002 .

[33]  Jordi Payá,et al.  Enhanced conductivity measurement techniques for evaluation of fly ash pozzolanic activity , 2001 .

[34]  Holmer Savastano,et al.  BRAZILIAN WASTE FIBRES AS REINFORCEMENT FOR CEMENT-BASED COMPOSITES , 2000 .

[35]  Bernhard Middendorf,et al.  Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: study of the reaction , 1998 .

[36]  F. Tasselli,et al.  A Study of the Hydration of Lime-Pozzolan Binders , 1998 .

[37]  M. P. Luxán,et al.  Rapid evaluation of pozzolanic activity of natural products by conductivity measurement , 1989 .

[38]  Kung Lo-shu,et al.  Research on several physico-mechanical properties of lightweight aggregate concrete☆ , 1980 .

[39]  E. G. Swenson,et al.  MICROSTRUCTURE OF CALCIUM SILICATE HYDRATES , 1971 .