Finding shortest paths in the plane in the presence of barriers to travel (for any lp - norm)

Abstract This paper develops an efficient algorithm for the computation of the shortest paths between given sets of points (origins and destinations) in the plane, when these paths are constrained not to cross any of a finite set of polygonal (open or closed) barriers. It is proved that when distances are measured by an 1p - norm with 1 It is also shown that optimal solutions when distances are measured according to the rectilinear or max-norm (i.e. lp-norm with p = 1 or p = ∞) can be deduced from the results of the algorithm.