Telecommunications IT and navigation for future Mars exploration missions

There are three primary drivers behind current investments in telecommunications information technology and navigation for Mars exploration. One is finding ways to maximize the volume of science data return since instrument data generation often exceeds communication bandwidth. Another is to provide the necessary technology to enable networked spacecraft. The third is to enable more precise landing so in-situ vehicles can be placed in more scientifically interesting regions. This paper describes current NASA investments in these areas funded through the Mars Technology Program (competed via NASA Research Announcements). Current investments are in stereo image compression, next generation Mars relay protocols, and a capability for autonomous approach navigation using in-situ Mars orbiter assets

[1]  Shyam Bhaskaran,et al.  Mars approach navigation using Mars network based doppler tracking , 2002 .

[2]  Kenneth Zeger,et al.  Residual image coding for stereo image compression , 2002, Proceedings. International Conference on Image Processing.

[3]  Jianmin Jiang,et al.  A hybrid scheme for low bit-rate coding of stereo images , 2002, IEEE Trans. Image Process..

[4]  Eran A. Edirisinghe,et al.  Baseline JPEG-like DWT CODEC for disparity compensated residual coding of stereo images , 2002, Proceedings 20th Eurographics UK Conference.

[5]  Stephen Farrell,et al.  Licklider Transmission Protocol - Specification , 2008, RFC.

[6]  T. A. Ely,et al.  Navigation services of the Mars Network , 2003 .

[7]  Mahmood R. Azimi-Sadjadi,et al.  A 2-D filtering scheme for stereo image compression using sequential orthogonal subspace updating , 2001, IEEE Trans. Circuits Syst. Video Technol..

[8]  M. Klimesh,et al.  The ICER Progressive Wavelet Image Compressor , 2003 .

[9]  Mahmood R. Azimi-Sadjadi,et al.  A least-squares-based 2-D filtering scheme for stereo image compression , 2000, IEEE Trans. Image Process..

[10]  Charles D. Edwards,et al.  Strategies for telecommunications and navigation in support of Mars exploration , 2001 .

[11]  Torsten Palfner,et al.  Progressive coding of stereo images using wavelets and overlapping blocks , 2002, Proceedings. International Conference on Image Processing.

[12]  Michael G. Perkins,et al.  Data compression of stereopairs , 1992, IEEE Trans. Commun..

[13]  Zixiang Xiong,et al.  High performance wavelet-based stereo image coding , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[14]  R. Thomas,et al.  Mars relay coordination lessons learned , 2005, 2005 IEEE Aerospace Conference.

[15]  Mark W. Maier,et al.  Transform coding of stereo image residuals , 1998, IEEE Trans. Image Process..

[16]  Michael G. Strintzis,et al.  A family of wavelet-based stereo image coders , 2002, IEEE Trans. Circuits Syst. Video Technol..

[17]  D. J. Bell,et al.  Mars network: a Mars orbiting communications and navigation satellite constellation , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[18]  Vinton G. Cerf,et al.  Delay-tolerant networking: an approach to interplanetary Internet , 2003, IEEE Commun. Mag..

[19]  Jiang,et al.  A Novel Predictive Coding Algorithm For 3-D Image Compression , 1997, 1997 International Conference on Consumer Electronics.

[20]  Charles D. Edwards,et al.  Mars network for enabling low-cost missions , 2003 .

[21]  Monson H. Hayes,et al.  A wavelet based stereo image coding algorithm , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).