Convergence Analysis of an Adaptive Interior Penalty Discontinuous Galerkin Method

We study the convergence of an adaptive interior penalty discontinuous Galerkin (IPDG) method for a two-dimensional model second order elliptic boundary value problem. Based on a residual-type a posteriori error estimator, we prove that after each refinement step of the adaptive scheme we achieve a guaranteed reduction of the global discretization error in the mesh-dependent energy norm associated with the IPDG method. In contrast to recent work on adaptive IPDG methods [O. Karakashian and F. Pascal, Convergence of Adaptive Discontinuous Galerkin Approximations of Second-order Elliptic Problems, preprint, University of Tennessee, Knoxville, TN, 2007], the convergence analysis does not require multiple interior nodes for refined elements of the triangulation. In fact, it will be shown that bisection of the elements is sufficient. The main ingredients of the proof of the error reduction property are the reliability and a perturbed discrete local efficiency of the estimator, a bulk criterion that takes care of a proper selection of edges and elements for refinement, and a perturbed Galerkin orthogonality property with respect to the energy inner product. The results of numerical experiments are given to illustrate the performance of the adaptive method.

[1]  Mary F. Wheeler,et al.  A Posteriori error estimates for a discontinuous galerkin method applied to elliptic problems. Log number: R74 , 2003 .

[2]  Guido Kanschat,et al.  A multilevel discontinuous Galerkin method , 2003, Numerische Mathematik.

[3]  Contents , 2020, Neurobiology of Aging.

[4]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[5]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[6]  Michael Vogelius,et al.  Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .

[7]  Mary F. Wheeler A Posteriori Error Estimates and Mesh Adaptation Strategy for Discontinuous Galerkin Methods Applied to Diffusion Problems , 2000 .

[8]  Ilaria Perugia,et al.  An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl)-elliptic partial differential equations , 2007 .

[9]  D. Schötzau,et al.  Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Stokes problem , 2003 .

[10]  Endre Süli,et al.  Adaptive finite element methods for differential equations , 2003, Lectures in mathematics.

[11]  Paul Houston,et al.  Energy Norm shape A Posteriori Error Estimation for Mixed Discontinuous Galerkin Approximations of the Stokes Problem , 2005, J. Sci. Comput..

[12]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[13]  B. Rivière,et al.  Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I , 1999 .

[14]  Ohannes A. Karakashian,et al.  Convergence of Adaptive Discontinuous Galerkin Approximations of Second-Order Elliptic Problems , 2007, SIAM J. Numer. Anal..

[15]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[16]  S. C. Brenner,et al.  An a posteriori error estimator for a quadratic C0-interior penalty method for the biharmonic problem , 2010 .

[17]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[18]  Susanne C. Brenner,et al.  C0 Interior Penalty Methods for Fourth Order Elliptic Boundary Value Problems on Polygonal Domains , 2005, J. Sci. Comput..

[19]  Improved Energy Estimates for Interior Penalty, Constrained and Discontinuous Galerkin Methods for Elliptical Problems Part I. Improved Energy Estimates for Interior Penalty, Constrained and Discontinuous Galerkin Methods for Elliptic Problems , 1999 .

[20]  Rolf Rannacher,et al.  Local error analysis of the interior penalty discontinuous Galerkin method for second order elliptic problems , 2002, J. Num. Math..

[21]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[22]  T. Hughes,et al.  Continuous/discontinuous finite element approximations of fourth-order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity , 2002 .

[23]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .

[24]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[25]  Carsten Carstensen,et al.  Error reduction and convergence for an adaptive mixed finite element method , 2006, Math. Comput..

[26]  Carsten Carstensen,et al.  Adaptive hybridized interior penalty discontinuous Galerkin methods for H(curl)-elliptic problems , 2010 .

[27]  Carsten Carstensen,et al.  Convergence analysis of an adaptive nonconforming finite element method , 2006, Numerische Mathematik.

[28]  Ilaria Perugia,et al.  Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator , 2005 .

[29]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[30]  Peter Hansbo,et al.  Energy norm a posteriori error estimation for discontinuous Galerkin methods , 2003 .

[31]  Paola F. Antonietti,et al.  Schwarz domain decomposition preconditioners for discontinuous Galerkin approximations of elliptic problems: non-overlapping case , 2007 .

[32]  Andrea Toselli,et al.  Mixed hp-DGFEM for Incompressible Flows , 2002, SIAM J. Numer. Anal..

[33]  Carsten Carstensen,et al.  Convergence analysis of an adaptive edge finite element method for the 2D eddy current equations , 2005, J. Num. Math..

[34]  Claes Johnson,et al.  Computational Differential Equations , 1996 .

[35]  I. Babuska,et al.  The finite element method and its reliability , 2001 .

[36]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[37]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[38]  D. W. Scharpf,et al.  The TUBA Family of Plate Elements for the Matrix Displacement Method , 1968, The Aeronautical Journal (1968).

[39]  S. C. Brenner,et al.  Poincaré–Friedrichs Inequalities for Piecewise H 2 Functions , 2004 .

[40]  Ricardo H. Nochetto,et al.  Quasi-Optimal Convergence Rate of an Adaptive Discontinuous Galerkin Method , 2010, SIAM J. Numer. Anal..

[41]  K. Garikipati,et al.  A discontinuous Galerkin formulation for a strain gradient-dependent damage model , 2004 .

[42]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[43]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[44]  Ilaria Perugia,et al.  Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids , 2001, SIAM J. Numer. Anal..

[45]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[46]  Johnny Guzmán Pointwise error estimates for discontinuous Galerkin methods with lifting operators for elliptic problems , 2006, Math. Comput..

[47]  Kunibert G. Siebert,et al.  Design of Adaptive Finite Element Software - The Finite Element Toolbox ALBERTA , 2005, Lecture Notes in Computational Science and Engineering.

[48]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[49]  G. Kanschat,et al.  Multilevel preconditioners for the interior penalty method , 2003 .

[50]  Ohannes A. Karakashian,et al.  A Posteriori Error Estimates for a Discontinuous Galerkin Approximation of Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..