Three-dimensional magnetic reconnection in astrophysical plasmas

Magnetic reconnection is a fundamental process in laboratory, magnetospheric, solar and astrophysical plasmas, whereby magnetic energy is converted into heat, bulk kinetic energy and fast particle energy. Its nature in two dimensions is much better understood than that in three dimensions, where its character is completely different and has many diverse aspects that are currently being explored. Here, we focus on the magnetohydrodynamics of three-dimensional reconnection in the plasma environment of the Solar System, especially solar flares. The theory of reconnection at null points, separators and quasi-separators is described, together with accounts of numerical simulations and observations of these three types of reconnection. The distinction between separator and quasi-separator reconnection is a theoretical one that is unimportant for the observations of energy release. A new paradigm for solar flares, in which three-dimensional reconnection plays a central role, is proposed.

[1]  Yuandeng Shen Observation and modelling of solar jets , 2021, Proceedings of the Royal Society A.

[2]  E. Priest,et al.  Chromospheric and coronal heating and jet acceleration due to reconnection driven by flux cancellation , 2021, Astronomy & Astrophysics.

[3]  S. Solanki,et al.  Impulsive coronal heating during the interaction of surface magnetic fields in the lower solar atmosphere , 2020, Astronomy & Astrophysics.

[4]  A. Veronig,et al.  Magnetic Flux of Active Regions Determining the Eruptive Character of Large Solar Flares , 2020, The Astrophysical Journal.

[5]  Zhi Xu,et al.  Imaging and Spectral Study on the Null Point of a Fan-spine Structure During a Solar Flare , 2020, The Astrophysical Journal.

[6]  N. Murphy,et al.  Magnetic reconnection in partially ionized plasmas , 2020, Proceedings of the Royal Society A.

[7]  E. Priest,et al.  The Creation of Twist by Reconnection of Flux Tubes , 2020 .

[8]  M. Dunlop,et al.  A three-dimensional model of spiral null pair to form ion-scale flux ropes in magnetic reconnection region observed by Cluster , 2019, Physics of Plasmas.

[9]  Jiayan Yang,et al.  Observational Analysis on the Early Evolution of a CME Flux Rope: Preflare Reconnection and Flux Rope’s Footpoint Drift , 2019, The Astrophysical Journal.

[10]  Zulin Wang,et al.  Evidence of Magnetic Nulls in the Reconnection at Bow Shock , 2019, Geophysical Research Letters.

[11]  E. Priest,et al.  Evidence for Downflows in the Narrow Plasma Sheet of 2017 September 10 and Their Significance for Flare Reconnection , 2018, The Astrophysical Journal.

[12]  Yijun Hou,et al.  A Secondary Fan-spine Magnetic Structure in Active Region 11897 , 2018, The Astrophysical Journal.

[13]  G. Aulanier,et al.  Drifting of the line-tied footpoints of CME flux-ropes , 2018, Astronomy & Astrophysics.

[14]  Yijun Hou,et al.  Three-dimensional Magnetic Reconnection Triggering an X-class Confined Flare in Active Region 12192 , 2018, The Astrophysical Journal.

[15]  E. Priest,et al.  A Cancellation Nanoflare Model for Solar Chromospheric and Coronal Heating. III. 3D Simulations and Atmospheric Response , 2018, The Astrophysical Journal.

[16]  Song Feng,et al.  Spectral and Imaging Observations of a Current Sheet Region in a Small-scale Magnetic Reconnection Event , 2018 .

[17]  Yijun Hou,et al.  Two Episodes of Magnetic Reconnections during a Confined Circular-ribbon Flare , 2018, The Astrophysical Journal.

[18]  Y. Guo,et al.  Observations of a White-light Flare Associated with a Filament Eruption , 2018, 1801.04408.

[19]  Yan Xu,et al.  Witnessing a Large-scale Slipping Magnetic Reconnection along a Dimming Channel during a Solar Flare , 2017, 1706.01355.

[20]  S. Antiochos,et al.  A universal model for solar eruptions , 2017, Nature.

[21]  A. Vaivads,et al.  Intermittent energy dissipation by turbulent reconnection , 2017 .

[22]  E. Priest,et al.  Flux-Rope Twist in Eruptive Flares and CMEs: Due to Zipper and Main-Phase Reconnection , 2016, Solar physics.

[23]  M. Janvier Three-dimensional magnetic reconnection and its application to solar flares , 2016, Journal of Plasma Physics.

[24]  L. S. Anusha,et al.  Estimation of the Magnetic Flux Emergence Rate in the Quiet Sun from Sunrise Data , 2016, 1611.06432.

[25]  Y. Liu,et al.  OSCILLATION OF CURRENT SHEETS IN THE WAKE OF A FLUX ROPE ERUPTION OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY , 2016 .

[26]  N. Raouafi,et al.  Solar Coronal Jets: Observations, Theory, and Modeling , 2016, Space Science Reviews.

[27]  M. Dunlop,et al.  Evolution of clustered magnetic nulls in a turbulent-like reconnection region in the magnetotail , 2016 .

[28]  G. Hornig,et al.  The global distribution of magnetic helicity in the solar corona , 2016, 1606.06863.

[29]  P. Démoulin,et al.  Why Are Flare Ribbons Associated with the Spines of Magnetic Null Points Generically Elongated? , 2016, 1605.05704.

[30]  H. Ji,et al.  EXPLOSIVE CHROMOSPHERIC EVAPORATION IN A CIRCULAR-RIBBON FLARE , 2016, 1605.02823.

[31]  M. Dunlop,et al.  In-situ observations of flux ropes formed in association with a pair of spiral nulls in magnetotail plasmas , 2016 .

[32]  B. Wang,et al.  SLIPPING MAGNETIC RECONNECTIONS WITH MULTIPLE FLARE RIBBONS DURING AN X-CLASS SOLAR FLARE , 2016, 1604.04982.

[33]  B. Schmieder,et al.  HOOKED FLARE RIBBONS AND FLUX-ROPE-RELATED QSL FOOTPRINTS , 2016, 1603.07563.

[34]  M. Karlický,et al.  SLIPPING MAGNETIC RECONNECTION, CHROMOSPHERIC EVAPORATION, IMPLOSION, AND PRECURSORS IN THE 2014 SEPTEMBER 10 X1.6-CLASS SOLAR FLARE , 2016, 1603.06092.

[35]  Stefano Markidis,et al.  MAGNETIC NULL POINTS IN KINETIC SIMULATIONS OF SPACE PLASMAS , 2015, 1512.02018.

[36]  N. Murphy,et al.  The appearance, motion, and disappearance of three-dimensional magnetic null points , 2015, 1509.05915.

[37]  A. Vaivads,et al.  Statistics and accuracy of magnetic null identification in multispacecraft data , 2015 .

[38]  T. Moore,et al.  Magnetic reconnection , 2015, Nature Physics.

[39]  L. Driel-Gesztelyi,et al.  PARALLEL EVOLUTION OF QUASI-SEPARATRIX LAYERS AND ACTIVE REGION UPFLOWS , 2015, 1507.01264.

[40]  C. Parnell,et al.  Null Point Distribution in Global Coronal Potential Field Extrapolations , 2015 .

[41]  X. Cheng,et al.  Extreme ultraviolet imaging of three-dimensional magnetic reconnection in a solar eruption , 2015, Nature Communications.

[42]  C. Parnell,et al.  Is magnetic topology important for heating the solar atmosphere? , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[43]  Kai Yang,et al.  ON THE 2012 OCTOBER 23 CIRCULAR RIBBON FLARE: EMISSION FEATURES AND MAGNETIC TOPOLOGY , 2015, 1505.02914.

[44]  Jun Zhang,et al.  QUASI-PERIODIC SLIPPING MAGNETIC RECONNECTION DURING AN X-CLASS SOLAR FLARE OBSERVED BY THE SOLAR DYNAMICS OBSERVATORY AND INTERFACE REGION IMAGING SPECTROGRAPH , 2015, 1504.01111.

[45]  D. Longcope,et al.  Relating magnetic reconnection to coronal heating , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[46]  H. Baty,et al.  The formation and stability of Petschek reconnection , 2014 .

[47]  Jun Zhang,et al.  SLIPPING MAGNETIC RECONNECTION TRIGGERING A SOLAR ERUPTION OF A TRIANGLE-SHAPED FLAG FLUX ROPE , 2014, 1407.4180.

[48]  E. Priest,et al.  The solar cycle variation of topological structures in the global solar corona , 2014, 1406.5333.

[49]  P. Démoulin,et al.  ELECTRIC CURRENTS IN FLARE RIBBONS: OBSERVATIONS AND THREE-DIMENSIONAL STANDARD MODEL , 2014, 1402.2010.

[50]  M. Karlický,et al.  SLIPPING MAGNETIC RECONNECTION DURING AN X-CLASS SOLAR FLARE OBSERVED BY SDO/AIA , 2014, 1401.7529.

[51]  G. Aulanier,et al.  HOT SPINE LOOPS AND THE NATURE OF A LATE-PHASE SOLAR FLARE , 2013, 1310.1438.

[52]  Jiansen He,et al.  Separator reconnection with antiparallel/component features observed in magnetotail plasmas , 2013 .

[53]  E. Priest,et al.  ON THE NATURE OF RECONNECTION AT A SOLAR CORONAL NULL POINT ABOVE A SEPARATRIX DOME , 2013, 1307.6874.

[54]  M. Temmer,et al.  Imaging coronal magnetic-field reconnection in a solar flare , 2013, Nature Physics.

[55]  P. Démoulin,et al.  The standard flare model in three dimensions - III. Slip-running reconnection properties , 2013, 1305.4053.

[56]  A. A. van Ballegooijen,et al.  MAGNETOHYDRODYNAMIC MODELING OF THE SOLAR ERUPTION ON 2010 APRIL 8 , 2013, 1304.6981.

[57]  D. Wendel,et al.  Current structure and nonideal behavior at magnetic null points in the turbulent magnetosheath , 2012 .

[58]  J. Linker,et al.  2010 AUGUST 1–2 SYMPATHETIC ERUPTIONS. I. MAGNETIC TOPOLOGY OF THE SOURCE-SURFACE BACKGROUND FIELD , 2012, 1209.5797.

[59]  G. Hornig,et al.  Unique topological characterization of braided magnetic fields. , 2012, 1208.2286.

[60]  Chang Liu,et al.  CIRCULAR RIBBON FLARES AND HOMOLOGOUS JETS , 2012, 1207.7345.

[61]  M. Janvier,et al.  The standard flare model in three dimensions - I. Strong-to-weak shear transition in post-flare loops , 2012 .

[62]  G. Aulanier,et al.  SIGMOIDAL ACTIVE REGION ON THE SUN: COMPARISON OF A MAGNETOHYDRODYNAMICAL SIMULATION AND A NONLINEAR FORCE-FREE FIELD MODEL , 2012 .

[63]  D. Pontin Theory of magnetic reconnection in solar and astrophysical plasmas , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[64]  K. Shibata,et al.  Solar Flares: Magnetohydrodynamic Processes , 2011 .

[65]  J. Qiu,et al.  Predictions of Energy and Helicity in Four Major Eruptive Solar Flares , 2011, 1104.3593.

[66]  C. Parnell,et al.  THE DETECTION OF NUMEROUS MAGNETIC SEPARATORS IN A THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC MODEL OF SOLAR EMERGING FLUX , 2010 .

[67]  T. Berger,et al.  CHROMOSPHERIC JET AND GROWING “LOOP” OBSERVED BY HINODE: NEW EVIDENCE OF FAN–SPINE MAGNETIC TOPOLOGY RESULTING FROM FLUX EMERGENCE , 2010, 1012.1897.

[68]  J. Cirtain,et al.  DICHOTOMY OF SOLAR CORONAL JETS: STANDARD JETS AND BLOWOUT JETS , 2010 .

[69]  J. C. del Toro Iniesta,et al.  Sunrise: INSTRUMENT, MISSION, DATA, AND FIRST RESULTS , 2010, 1008.3460.

[70]  C. Schrijver,et al.  MAGNETIC FIELD TOPOLOGY AND THE THERMAL STRUCTURE OF THE CORONA OVER SOLAR ACTIVE REGIONS , 2010 .

[71]  T. Forbes,et al.  Reconnection outflows and current sheet observed with Hinode/XRT in the April 9 2008 , 2010 .

[72]  S. Antiochos,et al.  THREE-DIMENSIONAL MODELING OF QUASI-HOMOLOGOUS SOLAR JETS , 2010 .

[73]  A. Wilmot-Smith,et al.  Dynamics of braided coronal loops - II. Cascade to multiple small-scale reconnection events , 2010, 1003.5784.

[74]  David E. McKenzie,et al.  RECONNECTION OUTFLOWS AND CURRENT SHEET OBSERVED WITH HINODE/XRT IN THE 2008 APRIL 9 “CARTWHEEL CME” FLARE , 2010, 1003.4758.

[75]  C. Parnell,et al.  Structure of magnetic separators and separator reconnection , 2010 .

[76]  E. Priest,et al.  Three-dimensional null point reconnection regimes , 2009 .

[77]  C. Parnell,et al.  How skeletons turn into quasi-separatrix layers in source models , 2009 .

[78]  L. Golub,et al.  FAN–SPINE TOPOLOGY FORMATION THROUGH TWO-STEP RECONNECTION DRIVEN BY TWISTED FLUX EMERGENCE , 2009, 0909.2235.

[79]  S. Masson,et al.  THE NATURE OF FLARE RIBBONS IN CORONAL NULL-POINT TOPOLOGY , 2009 .

[80]  R. Tang,et al.  Dynamics and waves near multiple magnetic null points in reconnection diffusion region , 2009 .

[81]  Yi-Min Huang,et al.  Fast reconnection in high-Lundquist-number plasmas due to the plasmoid Instability , 2009, 0906.5599.

[82]  G. Aulanier,et al.  Evidence of Magnetic Helicity in Emerging Flux and Associated Flare , 2009, 0906.1210.

[83]  D. McKenzie,et al.  QUANTITATIVE EXAMINATION OF SUPRA-ARCADE DOWNFLOWS IN ERUPTIVE SOLAR FLARES , 2009 .

[84]  C. Parnell,et al.  Three-Dimensional Magnetic Reconnection , 2009, 0903.0274.

[85]  Q.‐H. Zhang,et al.  Reconnection at high latitudes: antiparallel merging. , 2009, Physical review letters.

[86]  J. Luhmann,et al.  Topological Evolution of a Fast Magnetic Breakout CME in Three Dimensions , 2008 .

[87]  E. Priest,et al.  SLIP-SQUASHING FACTORS AS A MEASURE OF THREE-DIMENSIONAL MAGNETIC RECONNECTION , 2008, 0807.2892.

[88]  M. W. Dunlop,et al.  Electron trapping around a magnetic null , 2008 .

[89]  M. Dunlop,et al.  A magnetic null geometry reconstructed from Cluster spacecraft observations: A MAGNETIC NULL GEOMETRY , 2008 .

[90]  C. Parnell,et al.  Recursive Reconnection and Magnetic Skeletons , 2008 .

[91]  Haimin Wang,et al.  Determination of the Topology Skeleton of Magnetic Fields in a Solar Active Region , 2007, 0712.3319.

[92]  L. Golub,et al.  Slipping Magnetic Reconnection in Coronal Loops , 2007, Science.

[93]  D. Longcope,et al.  A Quantitative, Topological Model of Reconnection and Flux Rope Formation in a Two-Ribbon Flare , 2007 .

[94]  J. Qiu,et al.  Modeling and Measuring the Flux Reconnected and Ejected by the Two-Ribbon Flare/CME Event on 7 November 2004 , 2007 .

[95]  M. Kivelson,et al.  Satellite observations of separator-line geometry of three-dimensional magnetic reconnection , 2007, 0705.1021.

[96]  V. Titov,et al.  Generalized Squashing Factors for Covariant Description of Magnetic Connectivity in the Solar Corona , 2007, astro-ph/0703671.

[97]  A. Schekochihin,et al.  Instability of current sheets and formation of plasmoid chains , 2007, astro-ph/0703631.

[98]  E. Priest,et al.  Magnetohydrodynamic evolution of magnetic skeletons , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[99]  A. Bhattacharjee,et al.  Separator reconnection at Earth's dayside magnetopause under generic northward interplanetary magnetic field conditions , 2007 .

[100]  D. Pontin,et al.  Current amplification and magnetic reconnection at a three-dimensional null point: Physical characteristics , 2007, astro-ph/0701555.

[101]  P. Démoulin,et al.  Companion Event and Precursor of the X17 Flare on 28 October 2003 , 2006 .

[102]  P. Démoulin,et al.  Slip-Running Reconnection in Quasi-Separatrix Layers , 2006 .

[103]  I. Moortel,et al.  Numerical modelling of 3D reconnection - II. Comparison between rotational and spinning footpoint motions , 2006 .

[104]  M. Kivelson,et al.  In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth's magnetotail , 2006, physics/0606014.

[105]  T. Török,et al.  Torus instability. , 2006, Physical review letters.

[106]  P. Démoulin,et al.  Current sheet formation in quasi-separatrix layers and hyperbolic flux tubes , 2005 .

[107]  D. Longcope Topological Methods for the Analysis of Solar Magnetic Fields , 2005 .

[108]  E. Priest,et al.  Coronal Heating at Separators and Separatrices , 2005 .

[109]  J. Raymond,et al.  Direct Observations of the Magnetic Reconnection Site of an Eruption on 2003 November 18 , 2005 .

[110]  G. Hornig,et al.  Kinematic reconnection at a magnetic null point: fan-aligned current , 2004 .

[111]  G. Hornig,et al.  On the nature of three‐dimensional magnetic reconnection , 2003 .

[112]  G. Hornig,et al.  Evolution of magnetic flux in an isolated reconnection process , 2003 .

[113]  E. Priest,et al.  A Flux-Tube Tectonics Model for Solar Coronal Heating Driven by the Magnetic Carpet , 2002 .

[114]  T. Neukirch,et al.  Magnetic Pinching of Hyperbolic Flux Tubes. I. Basic Estimations , 2002, astro-ph/0208112.

[115]  G. Hornig,et al.  Theory of magnetic connectivity in the solar corona , 2002 .

[116]  D. Longcope Separator current sheets: Generic features in minimum-energy magnetic fields subject to flux constraints , 2001 .

[117]  L. Fletcher,et al.  A Relationship Between Transition Region Brightenings, Abundances, and Magnetic Topology , 2001 .

[118]  D. Longcope A Model for Current Sheets and Reconnection in X-Ray Bright Points , 1998 .

[119]  S. Antiochos,et al.  A Model for Solar Coronal Mass Ejections , 1998, astro-ph/9807220.

[120]  K. L. Harvey,et al.  Large-scale coronal heating by the small-scale magnetic field of the Sun , 1998, Nature.

[121]  D. Longcope,et al.  A current ribbon model for energy storage and release with application to the flare of 7 January 1992 , 1998 .

[122]  James Drake,et al.  Structure of the dissipation region during collisionless magnetic reconnection , 1998 .

[123]  P. Démoulin,et al.  QUASI-SEPARATRIX LAYERS IN SOLAR FLARES. II. OBSERVED MAGNETIC CONFIGURATIONS , 1997 .

[124]  E. Priest,et al.  The 3D topology and interaction of complex magnetic flux systems , 1997 .

[125]  E. Priest,et al.  Magnetic reconnection at three-dimensional null points , 1996, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[126]  E. Priest,et al.  Bifurcations of magnetic topology by the creation or annihilation of null points , 1996, Journal of Plasma Physics.

[127]  D. Longcope Topology and current ribbons: A model for current, reconnection and flaring in a complex, evolving corona , 1996 .

[128]  S. Cowley,et al.  Current sheet formation along three‐dimensional magnetic separators , 1996 .

[129]  Klaus Galsgaard,et al.  Heating and activity of the solar corona: 1. Boundary shearing of an initially homogeneous magnetic field , 1996 .

[130]  E. Priest,et al.  Three‐dimensional magnetic reconnection without null points: 2. Application to twisted flux tubes , 1996 .

[131]  E. Priest,et al.  Quasi-Separatrix layers in solar flares. I. Method. , 1996 .

[132]  J. M. Smith,et al.  The structure of three‐dimensional magnetic neutral points , 1996 .

[133]  G. Hornig,et al.  Magnetic topology and the problem of its invariant definition , 1996 .

[134]  E. Priest,et al.  Three‐dimensional magnetic reconnection without null points: 1. Basic theory of magnetic flipping , 1995 .

[135]  T. Kosugi,et al.  A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection , 1994, Nature.

[136]  E. Priest,et al.  Conditions for the appearance of "bald patches" at the solar surface , 1993 .

[137]  E. Priest,et al.  Magnetic flipping: Reconnection in three dimensions without null points , 1992 .

[138]  P. Démoulin,et al.  Evidence for the interaction of large scale magnetic structures in solar flares , 1991 .

[139]  E. Priest,et al.  Magnetic field evolution during prominence eruptions and two-ribbon flares , 1990 .

[140]  J. Finn,et al.  Three-dimensional kinematic reconnection in the presence of field nulls and closed field lines , 1990 .

[141]  M. Berger An energy formula for nonlinear force-free magnetic fields , 1988 .

[142]  J. M. Greene Geometrical properties of three‐dimensional reconnecting magnetic fields with nulls , 1988 .

[143]  M. Hesse,et al.  A theoretical foundation of general magnetic reconnection , 1988 .

[144]  J. Birn,et al.  General magnetic reconnection, parallel electric fields, and helicity , 1988 .

[145]  Eric Ronald Priest,et al.  A comparison of analytical and numerical models for steadily driven magnetic reconnection , 1987 .

[146]  M. Berger,et al.  The topological properties of magnetic helicity , 1984, Journal of Fluid Mechanics.

[147]  R. Kopp,et al.  Magnetic reconnection in the corona and the loop prominence phenomenon , 1976 .

[148]  E. Parker Topological dissipation and the small-scale fields in turbulent gases. , 1972 .

[149]  Eugene N. Parker,et al.  Sweet's mechanism for merging magnetic fields in conducting fluids , 1957 .

[150]  J. Dungey The Motion of Magnetic Fields , 1953 .

[151]  E. Priest Magnetohydrodynamics of the Sun: The Basic Equations of Magnetohydrodynamics (MHD) , 2014 .

[152]  C. Parnell,et al.  Three Dimensional Magnetic Reconnection at Null Points and Separators , 2011 .

[153]  Shinsuke Imada,et al.  Observation of energetic electrons within magnetic islands , 2008 .

[154]  T.,et al.  Topological Evolution of a Fast Magnetic Breakout CME in 3-Dimensions , 2008 .

[155]  E. Priest,et al.  Three-Dimensional Separator Reconnection — How Does It Occur? , 2001 .

[156]  Takaaki Yokoyama,et al.  Clear Evidence of Reconnection Inflow of a Solar Flare , 2001 .

[157]  Eric Ronald Priest,et al.  Magnetic Reconnection: MHD Theory and Applications , 2000 .

[158]  � 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. X-RAY OBSERVATIONS OF MOTIONS AND STRUCTURE ABOVE A SOLAR FLARE ARCADE , 1999 .

[159]  E. Priest Magnetic Reconnection on the Sun , 1986 .

[160]  E. Priest,et al.  Critical conditions for magnetic instabilities in force-free coronal loops , 1981 .

[161]  C. Villmann,et al.  Physical characteristics of the , 1972 .

[162]  Harry E. Petschek,et al.  Magnetic Field Annihilation , 1963 .

[163]  P. A. Sweet,et al.  The production of high energy particles in solar flares , 1958 .

[164]  P. Sweet The Neutral Point Theory of Solar Flares , 1958 .

[165]  A. V. R. Silva,et al.  A Current Ribbon Model for Energy Storage and Release with Application to the Are 1992 Jan. 7 , 2022 .