Chapter 2 Flagellar Motility in Bacteria

[1]  T. Iino Genetics and chemistry of bacterial flagella , 1969, Bacteriological reviews.

[2]  S. Asakura Polymerization of flagellin and polymorphism of flagella. , 1970, Advances in biophysics.

[3]  H. Berg,et al.  Bacteria Swim by Rotating their Flagellar Filaments , 1973, Nature.

[4]  M. Simon,et al.  Flagellar rotation and the mechanism of bacterial motility , 1974, Nature.

[5]  S. Asakura,et al.  Helical transformations of Salmonella flagella in vitro. , 1976, Journal of molecular biology.

[6]  R M Macnab,et al.  Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. , 1977, Journal of molecular biology.

[7]  C. R. Calldine Change of waveform in bacterial flagella : the role of mechanics at the molecular level , 1978 .

[8]  T. Suzuki,et al.  Incomplete flagellar structures in nonflagellate mutants of Salmonella typhimurium , 1978, Journal of bacteriology.

[9]  H. Berg,et al.  Energetics of flagellar rotation in bacteria. , 1980, Journal of molecular biology.

[10]  Y. Komeda,et al.  Incomplete flagellar structures in Escherichia coli mutants , 1981, Journal of bacteriology.

[11]  H. Berg,et al.  Isotope and thermal effects in chemiosmotic coupling to the flagellar motor of streptococcus , 1983, Cell.

[12]  M. Homma,et al.  Excretion of unassembled flagellin by Salmonella typhimurium mutants deficient in hook-associated proteins , 1984, Journal of bacteriology.

[13]  C Burks,et al.  Gene sequence and predicted amino acid sequence of the motA protein, a membrane-associated protein required for flagellar rotation in Escherichia coli , 1984, Journal of bacteriology.

[14]  H. Berg,et al.  Successive incorporation of force-generating units in the bacterial rotary motor , 1984, Nature.

[15]  M. Homma,et al.  Locations of hook-associated proteins in flagellar structures of Salmonella typhimurium , 1985, Journal of bacteriology.

[16]  Initiation of flagellar rotation in Rhodopseudomonas sphaeroides , 1985 .

[17]  Judith P. Armitage,et al.  Control of the protonmotive force in Rhodopseudomonas sphaeroides in the light and dark and its effect on the initiation of flagellar rotation , 1985 .

[18]  S. Asakura,et al.  "Cap" on the tip of Salmonella flagella. , 1985, Journal of molecular biology.

[19]  R. Macnab,et al.  Purification and characterization of the flagellar hook-basal body complex of Salmonella typhimurium , 1985, Journal of bacteriology.

[20]  R. Macnab,et al.  Genetic evidence for a switching and energy-transducing complex in the flagellar motor of Salmonella typhimurium , 1986, Journal of bacteriology.

[21]  R M Macnab,et al.  Nucleotide sequence of the Escherichia coli motB gene and site-limited incorporation of its product into the cytoplasmic membrane , 1986, Journal of bacteriology.

[22]  M. Homma,et al.  In vitro reconstitution of flagellar filaments onto hooks of filamentless mutants of Salmonella typhimurium by addition of hook-associated proteins. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[23]  R. Macnab,et al.  Subdivision of flagellar genes of Salmonella typhimurium into regions responsible for assembly, rotation, and switching , 1986, Journal of bacteriology.

[24]  R. Schmitt,et al.  Rhizobium meliloti swims by unidirectional, intermittent rotation of right-handed flagellar helices , 1987, Journal of bacteriology.

[25]  M. Homma,et al.  Localization and stoichiometry of hook-associated proteins within Salmonella typhimurium flagella , 1987, Journal of bacteriology.

[26]  Howard C. Berg,et al.  Rapid rotation of flagellar bundles in swimming bacteria , 1987, Nature.

[27]  R M Macnab,et al.  Unidirectional, intermittent rotation of the flagellum of Rhodobacter sphaeroides , 1987, Journal of bacteriology.

[28]  R. Macnab,et al.  The flaFIX gene product of Salmonella typhimurium is a flagellar basal body component with a signal peptide for export , 1987, Journal of bacteriology.

[29]  J. S. Parkinson,et al.  Bacterial motility: membrane topology of the Escherichia coli MotB protein. , 1988, Science.

[30]  R. Macnab,et al.  Overproduction of the MotA protein of Escherichia coli and estimation of its wild-type level , 1988, Journal of bacteriology.

[31]  M. Silverman,et al.  Flagellar dynamometer controls swarmer cell differentiation of V. parahaemolyticus , 1988, Cell.

[32]  T. Reese,et al.  Effects of mot gene expression on the structure of the flagellar motor. , 1988, Journal of molecular biology.

[33]  H. Berg,et al.  Restoration of torque in defective flagellar motors. , 1988, Science.

[34]  Y. Imae,et al.  Na+-driven bacterial flagellar motors , 1989, Journal of bioenergetics and biomembranes.

[35]  R. Macnab,et al.  Image reconstruction of the flagellar basal body of Salmonella typhimurium. , 1989, Journal of molecular biology.

[36]  R. Macnab,et al.  FlgB, FlgC, FlgF and FlgG. A family of structurally related proteins in the flagellar basal body of Salmonella typhimurium. , 1990, Journal of molecular biology.

[37]  R. Macnab,et al.  Co-overproduction and localization of the Escherichia coli motility proteins motA and motB , 1990, Journal of bacteriology.

[38]  Shin-Ichi Aizawa,et al.  Abrupt changes in flagellar rotation observed by laser dark-field microscopy , 1990, Nature.

[39]  S. Sugiyama,et al.  Specific inhibition of the Na(+)-driven flagellar motors of alkalophilic Bacillus strains by the amiloride analog phenamil , 1990, Journal of bacteriology.

[40]  H. Berg,et al.  The MotA protein of E. coli is a proton-conducting component of the flagellar motor , 1990, Cell.

[41]  Y. Ohya,et al.  Transcriptional analysis of the flagellar regulon of Salmonella typhimurium , 1990, Journal of bacteriology.

[42]  K. Namba,et al.  Monolayer crystallization of flagellar L-P rings by sequential addition and depletion of lipid , 1991, Science.

[43]  K. Hughes,et al.  Negative regulatory loci coupling flagellin synthesis to flagellar assembly in Salmonella typhimurium , 1991, Journal of bacteriology.

[44]  H. Berg,et al.  Evidence for interactions between MotA and MotB, torque-generating elements of the flagellar motor of Escherichia coli , 1991, Journal of bacteriology.

[45]  R M Macnab,et al.  Salmonella typhimurium mutants defective in flagellar filament regrowth and sequence similarity of FliI to F0F1, vacuolar, and archaebacterial ATPase subunits , 1991, Journal of bacteriology.

[46]  K. Ohnishi,et al.  A novel transcriptional regulation mechanism in the flagellar regulon of Salmonella typhimurium: an anti‐sigma factor inhibits the activity of the flagellum‐specific Sigma factor, σF , 1992, Molecular microbiology.

[47]  K. Namba,et al.  Morphological pathway of flagellar assembly in Salmonella typhimurium. , 1992, Journal of molecular biology.

[48]  R M Macnab,et al.  Molecular analysis of the flagellar switch protein FliM of Salmonella typhimurium , 1992, Journal of bacteriology.

[49]  K. Oosawa,et al.  M ring, S ring and proximal rod of the flagellar basal body of Salmonella typhimurium are composed of subunits of a single protein, FliF. , 1992, Journal of molecular biology.

[50]  Y. Imae,et al.  Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces , 1992, Nature.

[51]  R. Macnab,et al.  Localization of the Salmonella typhimurium flagellar switch protein FliG to the cytoplasmic M-ring face of the basal body. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[52]  Hirokazu Hotani,et al.  Flagellar growth in a filament-less Salmonella fliD mutant supplemented with purified hook-associated protein 2. , 1993, Journal of biochemistry.

[53]  H. Berg,et al.  Mutants in disulfide bond formation that disrupt flagellar assembly in Escherichia coli. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[54]  S. Kobayasi,et al.  Study of the torque of the bacterial flagellar motor using a rotating electric field. , 1993, Biophysical journal.

[55]  M Welch,et al.  Phosphorylation-dependent binding of a signal molecule to the flagellar switch of bacteria. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[56]  H. Berg,et al.  Torque generated by the flagellar motor of Escherichia coli. , 1993, Biophysical journal.

[57]  K. Hughes,et al.  Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. , 1993, Science.

[58]  J. Vanderleyden,et al.  The C‐terminal sequence conservation between OmpA‐related outer membrane proteins and MotB suggests a common function in both Gram‐positive and Gram‐negative bacteria, possibly in the interaction of these domains with peptidoglycan , 1994, Molecular microbiology.

[59]  K. Kutsukake,et al.  Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium , 1994, Journal of bacteriology.

[60]  K. Oosawa,et al.  Overproduction of the bacterial flagellar switch proteins and their interactions with the MS ring complex in vitro , 1994, Journal of bacteriology.

[61]  L. McCarter MotX, the channel component of the sodium-type flagellar motor , 1994, Journal of bacteriology.

[62]  T. Minamino,et al.  Isolation and characterization of FliK-independent flagellation mutants from Salmonella typhimurium , 1994, Journal of bacteriology.

[63]  D J DeRosier,et al.  Isolation, characterization and structure of bacterial flagellar motors containing the switch complex. , 1994, Journal of molecular biology.

[64]  J. S. Parkinson,et al.  A mutant hook-associated protein (HAP3) facilitates torsionally induced transformations of the flagellar filament of Escherichia coli. , 1994, Journal of molecular biology.

[65]  K. Oosawa,et al.  Roles of FliK and FlhB in determination of flagellar hook length in Salmonella typhimurium , 1994, Journal of bacteriology.

[66]  L. McCarter MotY, a component of the sodium-type flagellar motor , 1994, Journal of bacteriology.

[67]  X. Liu,et al.  The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons , 1994, Journal of bacteriology.

[68]  R. Fazzio,et al.  Membrane topology of the MotA protein of Escherichia coli. , 1995, Journal of Molecular Biology.

[69]  K Namba,et al.  The structure of the R-type straight flagellar filament of Salmonella at 9 A resolution by electron cryomicroscopy. , 1995, Journal of molecular biology.

[70]  D. DeRosier,et al.  Structure of Bacterial Flagellar Filaments at 11 Å Resolution: Packing of the α-Helices , 1995 .

[71]  H. Berg,et al.  Powering the flagellar motor of Escherichia coli with an external voltage source , 1995, Nature.

[72]  D. Blair,et al.  Regulated underexpression and overexpression of the FliN protein of Escherichia coli and evidence for an interaction between FliN and FliM in the flagellar motor , 1995, Journal of bacteriology.

[73]  H C Berg,et al.  Fluctuation analysis of rotational speeds of the bacterial flagellar motor. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[74]  R. Koebnik,et al.  Proposal for a peptidoglycan‐associating alpha‐helical motif in the C‐terminal regions of some bacterial cell‐surface proteins , 1995, Molecular microbiology.

[75]  R. Sockett,et al.  Analysis of the motA flagellar motor gene from Rhodobacter sphaeroides a bacterium with a unidirectional, stop‐start flagellum , 1995, Molecular microbiology.

[76]  D. Blair,et al.  Motility protein complexes in the bacterial flagellar motor. , 1996, Journal of molecular biology.

[77]  C. Amsler,et al.  FliG and FliM distribution in the Salmonella typhimurium cell and flagellar basal bodies , 1996, Journal of bacteriology.

[78]  R. Macnab,et al.  Enzymatic Characterization of FliI , 1996, The Journal of Biological Chemistry.

[79]  N. Baba,et al.  Geometry of the flagellar motor in the cytoplasmic membrane of Salmonella typhimurium as determined by stereo-photogrammetry of quick-freeze deep-etch replica images. , 1996, Journal of molecular biology.

[80]  R. Macnab,et al.  Physiological and biochemical analyses of FlgH, a lipoprotein forming the outer membrane L ring of the flagellar basal body of Salmonella typhimurium , 1996, Journal of bacteriology.

[81]  T. Reese,et al.  FliN is a major structural protein of the C-ring in the Salmonella typhimurium flagellar basal body. , 1996, Journal of molecular biology.

[82]  M. Homma,et al.  Cloning and characterization of motY, a gene coding for a component of the sodium-driven flagellar motor in Vibrio alginolyticus , 1996, Journal of bacteriology.

[83]  D. Blair,et al.  Torque generation in the flagellar motor of Escherichia coli: evidence of a direct role for FliG but not for FliM or FliN , 1996, Journal of bacteriology.

[84]  H C Berg,et al.  Torque-generating units of the bacterial flagellar motor step independently. , 1996, Biophysical journal.

[85]  A regulator of the flagellar regulon of Escherichia coli, flhD, also affects cell division. , 1996, Journal of bacteriology.

[86]  H. Berg,et al.  Interacting components of the flagellar motor of Escherichia coli revealed by the two-hybrid system in yeast. , 1996, Journal of molecular biology.

[87]  D. Blair,et al.  Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. , 1997, Journal of molecular biology.

[88]  S. Kojima,et al.  Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium , 1997, Journal of bacteriology.

[89]  A. Newton,et al.  Regulation of the Caulobacter flagellar gene hierarchy; not just for motility , 1997, Molecular microbiology.

[90]  R. Schmitt,et al.  Three genes of a motility operon and their role in flagellar rotary speed variation in Rhizobium meliloti , 1997, Journal of bacteriology.

[91]  M. Winkler,et al.  The flk gene of Salmonella typhimurium couples flagellar P- and L-ring assembly to flagellar morphogenesis , 1997, Journal of bacteriology.

[92]  R. Macnab,et al.  Distinct regions of bacterial flagellar switch protein FliM interact with FliG, FliN and CheY. , 1997, Journal of molecular biology.

[93]  P. Matsumura,et al.  Cell cycle regulation of flagellar genes , 1997, Journal of bacteriology.

[94]  R. Macnab,et al.  The FliP and FliR proteins of Salmonella typhimurium, putative components of the type III flagellar export apparatus, are located in the flagellar basal body , 1997, Molecular microbiology.

[95]  K. Kutsukake Hook-length control of the export-switching machinery involves a double-locked gate in Salmonella typhimurium flagellar morphogenesis , 1997, Journal of bacteriology.

[96]  S. Kojima,et al.  Vibrio alginolyticus mutants resistant to phenamil, a specific inhibitor of the sodium-driven flagellar motor. , 1997, Journal of molecular biology.

[97]  Mark J. Schnitzer,et al.  Kinesin hydrolyses one ATP per 8-nm step , 1997, Nature.

[98]  D. Blair,et al.  Residues of the cytoplasmic domain of MotA essential for torque generation in the bacterial flagellar motor. , 1997, Journal of molecular biology.

[99]  K. Hasegawa,et al.  Structure and switching of bacterial flagellar filaments studied by X-ray fiber diffraction , 1998, Nature Structural Biology.

[100]  D. Blair,et al.  Domain Analysis of the FliM Protein ofEscherichia coli , 1998, Journal of bacteriology.

[101]  D. Blair,et al.  Electrostatic interactions between rotor and stator in the bacterial flagellar motor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[102]  Kazuhiko Kinosita,et al.  F1-ATPase Is a Highly Efficient Molecular Motor that Rotates with Discrete 120° Steps , 1998, Cell.

[103]  D. Blair,et al.  Function of Protonatable Residues in the Flagellar Motor of Escherichia coli: a Critical Role for Asp 32 of MotB , 1998, Journal of bacteriology.

[104]  C. Hueck,et al.  Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants , 1998, Microbiology and Molecular Biology Reviews.

[105]  R. Macnab,et al.  Components of the Salmonella Flagellar Export Apparatus and Classification of Export Substrates , 1999, Journal of bacteriology.

[106]  Matthias Rief,et al.  Myosin-V is a processive actin-based motor , 1999, Nature.

[107]  D. Blair,et al.  Function of Proline Residues of MotA in Torque Generation by the Flagellar Motor of Escherichia coli , 1999, Journal of bacteriology.

[108]  J P Armitage,et al.  Bacterial tactic responses. , 1999, Advances in microbial physiology.

[109]  R. Macnab,et al.  Peptidoglycan-Hydrolyzing Activity of the FlgJ Protein, Essential for Flagellar Rod Formation inSalmonella typhimurium , 1999, Journal of bacteriology.

[110]  C. Hill,et al.  Structure of the C-terminal domain of FliG, a component of the rotor in the bacterial flagellar motor , 1999, Nature.

[111]  M. Homma,et al.  Hybrid Motor with H+- and Na+-Driven Components Can Rotate Vibrio Polar Flagella by Using Sodium Ions , 1999, Journal of bacteriology.

[112]  S. Kojima,et al.  Na+-driven flagellar motor resistant to phenamil, an amiloride analog, caused by mutations in putative channel components. , 1999, Journal of molecular biology.

[113]  G. Fraser,et al.  Substrate‐specific binding of hook‐associated proteins by FlgN and FliT, putative chaperones for flagellum assembly , 1999, Molecular microbiology.

[114]  L. McCarter,et al.  Mutations conferring resistance to phenamil and amiloride, inhibitors of sodium-driven motility of Vibrio parahaemolyticus. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[115]  T. Minamino,et al.  Substrate specificity switching of the flagellum-specific export apparatus during flagellar morphogenesis in Salmonella typhimurium. , 1999, Bioscience, biotechnology, and biochemistry.

[116]  H. Berg,et al.  Torque generated by the flagellar motor of Escherichia coli while driven backward. , 1999, Biophysical journal.

[117]  D J DeRosier,et al.  Rotational symmetry of the C ring and a mechanism for the flagellar rotary motor. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[118]  Seth Lloyd,et al.  Obituary: Rolf Landauer (1927-99) , 1999, Nature.

[119]  R M Berry,et al.  The bacterial flagella motor. , 1999, Advances in microbial physiology.

[120]  William S. Ryu,et al.  Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio , 2000, Nature.

[121]  R. Macnab,et al.  Interaction between FliE and FlgB, a Proximal Rod Component of the Flagellar Basal Body ofSalmonella , 2000, Journal of bacteriology.

[122]  H. Berg,et al.  Solvent-isotope and pH effects on flagellar rotation in Escherichia coli. , 2000, Biophysical journal.

[123]  M. Homma,et al.  Coupling ion specificity of chimeras between H+‐ and Na+‐driven motor proteins, MotB and PomB, in Vibrio polar flagella , 2000, The EMBO journal.

[124]  R. Macnab,et al.  FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity , 2000, Molecular microbiology.

[125]  T. Nambu,et al.  The Salmonella FlgA protein, a putativeve periplasmic chaperone essential for flagellar P ring formation. , 2000, Microbiology.

[126]  R. Macnab,et al.  Role of FliJ in Flagellar Protein Export inSalmonella , 2000, Journal of bacteriology.

[127]  M. Homma,et al.  Intermolecular Cross-linking between the Periplasmic Loop3–4 Regions of PomA, a Component of the Na+-driven Flagellar Motor of Vibrio alginolyticus * , 2000, The Journal of Biological Chemistry.

[128]  M. Homma,et al.  A Slow-Motility Phenotype Caused by Substitutions at Residue Asp31 in the PomA Channel Component of a Sodium-Driven Flagellar Motor , 2000, Journal of bacteriology.

[129]  H. Berg,et al.  Torque-speed relationship of the flagellar rotary motor of Escherichia coli. , 2000, Biophysical journal.

[130]  S. Leibler,et al.  An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. , 2000, Science.

[131]  M. Homma,et al.  Multimeric Structure of PomA, a Component of the Na+-driven Polar Flagellar Motor of Vibrio alginolyticus * , 2000, The Journal of Biological Chemistry.

[132]  K. Hughes,et al.  Coupling of Flagellar Gene Expression to Flagellar Assembly in Salmonella enterica Serovar Typhimurium andEscherichia coli , 2000, Microbiology and Molecular Biology Reviews.

[133]  M. Homma,et al.  Functional Reconstitution of the Na+-driven Polar Flagellar Motor Component of Vibrio alginolyticus* , 2000, The Journal of Biological Chemistry.

[134]  A. Matin,et al.  The G‐protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida , 2000, Molecular microbiology.

[135]  R. Macnab,et al.  Interactions among components of the Salmonella flagellar export apparatus and its substrates , 2000, Molecular microbiology.

[136]  D G Morgan,et al.  The bacterial flagellar cap as the rotary promoter of flagellin self-assembly. , 2000, Science.

[137]  J. Löwe,et al.  Crystal structure of the bacterial cell division regulator MinD , 2001, FEBS letters.

[138]  L. McCarter Polar Flagellar Motility of theVibrionaceae , 2001, Microbiology and Molecular Biology Reviews.

[139]  M. Homma,et al.  Cloning and characterization of motX, a Vibrio alginolyticus sodium-driven flagellar motor gene. , 2001, Journal of biochemistry.

[140]  D. DeRosier,et al.  Structures of Bacterial Flagellar Motors from Two FliF-FliG Gene Fusion Mutants , 2001, Journal of bacteriology.

[141]  M. Homma,et al.  Na(+)-driven flagellar motor of Vibrio. , 2001, Biochimica et biophysica acta.

[142]  D. Blair,et al.  Targeted disulfide cross-linking of the MotB protein of Escherichia coli: evidence for two H(+) channels in the stator Complex. , 2001, Biochemistry.

[143]  G. Fraser,et al.  Substrate complexes and domain organization of the Salmonella flagellar export chaperones FlgN and FliT , 2001, Molecular microbiology.

[144]  Seok-Yong Lee,et al.  Crystal structure of an activated response regulator bound to its target , 2001, Nature Structural Biology.

[145]  Takashi Kumasaka,et al.  Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling , 2001, Nature.

[146]  S. Kojima,et al.  Conformational change in the stator of the bacterial flagellar motor. , 2001, Biochemistry.

[147]  Jae Young Lee,et al.  Crystal structure and functional analysis of the SurE protein identify a novel phosphatase family , 2001, Nature Structural Biology.

[148]  H. Berg,et al.  Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[149]  Harley H. McAdams,et al.  Generating and Exploiting Polarity in Bacteria , 2002, Science.

[150]  M. Homma,et al.  The systematic substitutions around the conserved charged residues of the cytoplasmic loop of Na+-driven flagellar motor component PomA. , 2002, Journal of molecular biology.

[151]  R. Schmitt Sinorhizobial chemotaxis: a departure from the enterobacterial paradigm. , 2002, Microbiology.

[152]  C. Hill,et al.  Crystal structure of the middle and C‐terminal domains of the flagellar rotor protein FliG , 2002, The EMBO journal.

[153]  K. Namba,et al.  Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy , 2003, Nature.

[154]  J. S. Parkinson,et al.  Bacterial Chemotaxis: a New Player in Response Regulator Dephosphorylation , 2003, Journal of bacteriology.

[155]  H. Berg The rotary motor of bacterial flagella. , 2003, Annual review of biochemistry.

[156]  L. McCarter,et al.  Lateral Flagellar Gene System of Vibrio parahaemolyticus , 2003, Journal of bacteriology.

[157]  R. Macnab,et al.  Interactions of FliJ with the Salmonella Type III Flagellar Export Apparatus , 2003, Journal of bacteriology.

[158]  Shahid Khan,et al.  Binding of the Chemotaxis Response Regulator CheY to the Isolated, Intact Switch Complex of the Bacterial Flagellar Motor , 2003, Journal of Biological Chemistry.

[159]  H. Berg,et al.  The speed of the flagellar rotary motor of Escherichia coli varies linearly with protonmotive force , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[160]  M. Homma,et al.  Ion-coupling determinants of Na+-driven and H+-driven flagellar motors. , 2003, Journal of molecular biology.

[161]  R. Schmitt Helix rotation model of the flagellar rotary motor. , 2003, Biophysical journal.

[162]  Michio Homma,et al.  Torque-speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus. , 2003, Journal of molecular biology.

[163]  R. Macnab,et al.  How bacteria assemble flagella. , 2003, Annual review of microbiology.

[164]  R. Sockett,et al.  Purification and Characterization of the Flagellar Basal Body of Rhodobacter sphaeroides , 2003, Journal of bacteriology.

[165]  M. Homma,et al.  The conserved charged residues of the C-terminal region of FliG, a rotor component of the Na+-driven flagellar motor. , 2003, Journal of molecular biology.

[166]  L. Claret,et al.  Oligomerization and activation of the FliI ATPase central to bacterial flagellum assembly , 2003, Molecular microbiology.

[167]  R. Macnab Type III flagellar protein export and flagellar assembly. , 2004, Biochimica et biophysica acta.

[168]  L. McCarter Dual Flagellar Systems Enable Motility under Different Circumstances , 2004, Journal of Molecular Microbiology and Biotechnology.

[169]  K. Ohnishi,et al.  Gene fliA encodes an alternative sigma factor specific for flagellar operons in Salmonella typhimurium , 1990, Molecular and General Genetics MGG.

[170]  M. Homma,et al.  Interaction of PomB with the Third Transmembrane Segment of PomA in the Na+-Driven Polar Flagellum of Vibrio alginolyticus , 2004, Journal of bacteriology.

[171]  K. Kutsukake Excretion of the anti-sigma factor through a flagellar substructure couples flagellar gene expression with flagellar assembly in Salmonella typhimurium , 1994, Molecular and General Genetics MGG.

[172]  Katsumi Imada,et al.  Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism , 2004, Nature.

[173]  S. Kojima,et al.  Solubilization and purification of the MotA/MotB complex of Escherichia coli. , 2004, Biochemistry.

[174]  Irmgard Sinning,et al.  SRP-mediated protein targeting: structure and function revisited. , 2004, Biochimica et biophysica acta.

[175]  P. Focia,et al.  Heterodimeric GTPase Core of the SRP Targeting Complex , 2004, Science.

[176]  Hirofumi Suzuki,et al.  Structure of the rotor of the bacterial flagellar motor revealed by electron cryomicroscopy and single-particle image analysis. , 2004, Journal of molecular biology.

[177]  M. Homma,et al.  Multimeric structure of the PomA/PomB channel complex in the Na+-driven flagellar motor of Vibrio alginolyticus. , 2004, Journal of biochemistry.

[178]  S. Kojima,et al.  Arrangement of core membrane segments in the MotA/MotB proton-channel complex of Escherichia coli. , 2004, Biochemistry.

[179]  K. Namba,et al.  Self-Assembly and Type III Protein Export of the Bacterial Flagellum , 2004, Journal of Molecular Microbiology and Biotechnology.

[180]  Seiji Kojima,et al.  The bacterial flagellar motor: structure and function of a complex molecular machine. , 2004, International review of cytology.

[181]  L. McCarter,et al.  The Complex Flagellar Torque Generator of Pseudomonas aeruginosa , 2004, Journal of bacteriology.

[182]  M. Haslbeck,et al.  MotE serves as a new chaperone specific for the periplasmic motility protein, MotC, in Sinorhizobium meliloti , 2004, Molecular microbiology.

[183]  T. Henkin,et al.  MotPS is the stator‐force generator for motility of alkaliphilic Bacillus, and its homologue is a second functional Mot in Bacillus subtilis , 2004, Molecular microbiology.

[184]  Naoya Terahara,et al.  Properties of motility in Bacillus subtilis powered by the H+-coupled MotAB flagellar stator, Na+-coupled MotPS or hybrid stators MotAS or MotPB. , 2005, Journal of molecular biology.

[185]  M. Homma,et al.  Assembly of motor proteins, PomA and PomB, in the Na+-driven stator of the flagellar motor. , 2005, Journal of molecular biology.

[186]  Eric Gouaux,et al.  Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters , 2005, Nature.

[187]  C. Hill,et al.  Crystal Structure of the Flagellar Rotor Protein FliN from Thermotoga maritima , 2005, Journal of bacteriology.

[188]  Michio Homma,et al.  Direct observation of steps in rotation of the bacterial flagellar motor , 2005, Nature.

[189]  R. Schmitt,et al.  Control of speed modulation (chemokinesis) in the unidirectional rotary motor of Sinorhizobium meliloti , 2005, Molecular microbiology.

[190]  M. Homma,et al.  Interactions of MotX with MotY and with the PomA/PomB Sodium Ion Channel Complex of the Vibrio alginolyticus Polar Flagellum* , 2005, Journal of Biological Chemistry.

[191]  J. S. Parkinson,et al.  Collaborative signaling by bacterial chemoreceptors. , 2005, Current opinion in microbiology.

[192]  G. O’Toole,et al.  Evidence for Two Flagellar Stators and Their Role in the Motility of Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[193]  Hartmut Michel,et al.  Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH , 2005, Nature.

[194]  Ichiro Yamato,et al.  Structure of the Rotor of the V-Type Na+-ATPase from Enterococcus hirae , 2005, Science.

[195]  E. Bakker,et al.  The Escherichia coli MotAB proton channel unplugged. , 2006, Journal of molecular biology.

[196]  R. Macnab,et al.  The type III flagellar export specificity switch is dependent on FliK ruler and a molecular clock. , 2006, Journal of molecular biology.

[197]  G. Wadhams,et al.  Stoichiometry and turnover in single, functioning membrane protein complexes , 2006, Nature.

[198]  H. Terashima,et al.  Regulation of polar flagellar number by the flhF and flhG genes in Vibrio alginolyticus. , 2006, Journal of biochemistry.

[199]  K. Namba,et al.  Interactions between C ring proteins and export apparatus components: a possible mechanism for facilitating type III protein export , 2006, Molecular microbiology.

[200]  Fan Bai,et al.  Torque–speed relationship of the bacterial flagellar motor , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[201]  D. DeRosier,et al.  The Three-Dimensional Structure of the Flagellar Rotor from a Clockwise-Locked Mutant of Salmonella enterica Serovar Typhimurium , 2006, Journal of bacteriology.

[202]  G. Murphy,et al.  In situ structure of the complete Treponema primitia flagellar motor , 2006, Nature.

[203]  Switched or not?: the structure of unphosphorylated CheY bound to the N terminus of FliM. , 2006, Journal of bacteriology.

[204]  T. Minamino,et al.  Flipping the switch: bringing order to flagellar assembly. , 2006, Trends in microbiology.

[205]  J. Armitage,et al.  The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[206]  M. Homma,et al.  Role of the Intramolecular Disulfide Bond in FlgI, the Flagellar P-Ring Component of Escherichia coli , 2006, Journal of bacteriology.

[207]  R. Berry,et al.  Fluorescence measurement of intracellular sodium concentration in single Escherichia coli cells. , 2006, Biophysical journal.

[208]  D. Blair,et al.  Structure of FliM provides insight into assembly of the switch complex in the bacterial flagella motor , 2006, Proceedings of the National Academy of Sciences.

[209]  H. Terashima,et al.  The Vibrio motor proteins, MotX and MotY, are associated with the basal body of Na+‐driven flagella and required for stator formation , 2006, Molecular microbiology.

[210]  Hirofumi Suzuki,et al.  Oligomerization of the bacterial flagellar ATPase FliI is controlled by its extreme N-terminal region. , 2006, Journal of molecular biology.

[211]  D. Blair,et al.  Mutational Analysis of the Flagellar Rotor Protein FliN: Identification of Surfaces Important for Flagellar Assembly and Switching , 2006, Journal of bacteriology.

[212]  D. Blair,et al.  Organization of FliN Subunits in the Flagellar Motor of Escherichia coli , 2006, Journal of bacteriology.

[213]  G. Cornelis,et al.  The type III secretion injectisome , 2006, Nature Reviews Microbiology.

[214]  M. Homma,et al.  Roles of Charged Residues of Rotor and Stator in Flagellar Rotation: Comparative Study using H+-Driven and Na+-Driven Motors in Escherichia coli , 2006, Journal of bacteriology.

[215]  K. Namba,et al.  Electron cryomicroscopic visualization of PomA/B stator units of the sodium-driven flagellar motor in liposomes. , 2006, Journal of molecular biology.

[216]  J. McMurry,et al.  The FliN-FliH interaction mediates localization of flagellar export ATPase FliI to the C ring complex. , 2006, Biochemistry.

[217]  K. Hughes,et al.  Flk prevents premature secretion of the anti‐σ factor FlgM into the periplasm , 2006 .

[218]  R. Samudrala,et al.  The mechanism of outer membrane penetration by the eubacterial flagellum and implications for spirochete evolution. , 2007, Genes & development.

[219]  R. Berry,et al.  Nonequivalence of membrane voltage and ion-gradient as driving forces for the bacterial flagellar motor at low load. , 2007, Biophysical journal.

[220]  K. Namba,et al.  Structural similarity between the flagellar type III ATPase FliI and F1-ATPase subunits , 2007, Proceedings of the National Academy of Sciences.

[221]  R. Waters,et al.  The FliK protein and flagellar hook‐length control , 2007, Protein science : a publication of the Protein Society.

[222]  Masaru Kojima,et al.  The bidirectional polar and unidirectional lateral flagellar motors of Vibrio alginolyticus are controlled by a single CheY species , 2007, Molecular microbiology.

[223]  S. Kojima,et al.  Visualization of functional rotor proteins of the bacterial flagellar motor in the cell membrane. , 2007, Journal of molecular biology.

[224]  D. Blair,et al.  Mutational Analysis of the Flagellar Protein FliG: Sites of Interaction with FliM and Implications for Organization of the Switch Complex , 2006, Journal of bacteriology.

[225]  I. Sinning,et al.  The crystal structure of the third signal-recognition particle GTPase FlhF reveals a homodimer with bound GTP , 2007, Proceedings of the National Academy of Sciences.

[226]  K. Hughes,et al.  FliK regulates flagellar hook length as an internal ruler , 2007, Molecular microbiology.

[227]  H. Terashima,et al.  Collaboration of FlhF and FlhG to regulate polar-flagella number and localization in Vibrio alginolyticus. , 2008, Microbiology.

[228]  K. Namba,et al.  Insights into the stator assembly of the Vibrio flagellar motor from the crystal structure of MotY , 2008, Proceedings of the National Academy of Sciences.

[229]  A. Wolfe,et al.  Get the Message Out: Cyclic-Di-GMP Regulates Multiple Levels of Flagellum-Based Motility , 2007, Journal of bacteriology.

[230]  Michio Homma,et al.  Torque-speed relationships of Na+-driven chimeric flagellar motors in Escherichia coli. , 2008, Journal of molecular biology.

[231]  S. Kojima,et al.  Roles of Charged Residues in the C-Terminal Region of PomA, a Stator Component of the Na+-Driven Flagellar Motor , 2008, Journal of bacteriology.