Microcrystalline silicon-oxygen alloys for application in silicon solar cells and modules

Abstract Microcrystalline silicon oxide (µc-SiO x :H) alloys prepared by plasma enhanced chemical vapor deposition (PECVD) represent a versatile material class for opto-electronic applications especially for thin-film and wafer based silicon solar cells. The material is a phase mixture of microcrystalline silicon (µc-Si:H) and amorphous silicon oxide (a-SiO x :H). The possibility to enhance the optical band gap energy and to adjust the refractive index over a considerable range, together with the possibility to dope the material p-type as well as n-type, makes μc-SiO x :H an ideal material for the application as window layer, as intermediate reflector (IR), and as back reflector in thin-film silicon solar cells. Analogously, μc-SiO x :H is a suitable material for p- and n-type contact layers in silicon hetero junction (SHJ) solar cells. The present paper gives an overview on the range of physical parameters (refractive index, optical band gap, conductivity) which can be covered by this material by variation of the deposition conditions. The paper focuses on the interdependence between these material properties and optical improvements for amorphous silicon/microcrystalline silicon (a-Si:H/µc-Si:H) tandem solar cells prepared on different substrates, such as Asahi (VU) and sputtered ZnO:Al. It gives a guideline on possible optical gains when using doped µc-SiO x :H in silicon based solar cells. As intermediate reflector in a-Si:H/µc-Si:H tandem cells µc-SiO x :H leads to an effective transfer of short circuit current generation from the bottom cell to the top cell resulting in a possible thickness reduction of the top cell by 40%. Within another series of solar cells shown in this paper a short circuit current density of 14.1 mA/cm² for an a-Si:H/µc-Si:H tandem solar cell with a µc-SiO x :H intermediate reflector is demonstrated. A SHJ solar cell on a flat (non-textured) wafer using p- and n-type doped µc-SiO x :H contact layers with an effective area efficiency of 19.0% is also presented.

[1]  Advanced light trapping management by diffractive interlayer for thin-film silicon solar cells , 2008 .

[2]  P. Sichanugrist,et al.  Amorphous silicon oxide with microcrystalline Si phase , 1993 .

[3]  A. Gordijn,et al.  Highly transparent microcrystalline silicon carbide grown with hot wire chemical vapor deposition as window layers in n-i-p microcrystalline silicon solar cells , 2007 .

[4]  P. D. Veneri,et al.  Improved micromorph solar cells by means of mixed‐phase n‐doped silicon oxide layers , 2013 .

[5]  H. Fujiwara,et al.  Crystalline Si Heterojunction Solar Cells with the Double Heterostructure of Hydrogenated Amorphous Silicon Oxide , 2009 .

[6]  A. Gross,et al.  N-side illuminated microcrystalline silicon solar cells , 2001 .

[7]  T. Mueller,et al.  Crystalline silicon surface passivation by high-frequency plasma-enhanced chemical-vapor-deposited nanocomposite silicon suboxides for solar cell applications , 2010 .

[8]  Enhanced light-trapping for micromorph tandem solar cells by LP-CVD ZnO , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[9]  Bernd Rech,et al.  The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells , 2007 .

[10]  H. Fujiwara,et al.  Application of hydrogenated amorphous silicon oxide layers to c-Si heterojunction solar cells , 2007 .

[11]  P. Buehlmann,et al.  In situ silicon oxide based intermediate reflector for thin-film silicon micromorph solar cells , 2007 .

[12]  C. Ballif,et al.  High-efficiency Silicon Heterojunction Solar Cells: A Review , 2012 .

[13]  T. Suezaki,et al.  Thin film silicon solar cell and module , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[14]  C. Ballif,et al.  Resistive interlayer for improved performance of thin film silicon solar cells on highly textured substrate , 2010 .

[15]  B. Rech,et al.  Intrinsic Microcrystalline Silicon for Solar Cells , 1999 .

[16]  T. Grundler,et al.  Hydrogenated amorphous silicon oxide containing a microcrystalline silicon phase and usage as an intermediate reflector in thin-film silicon solar cells , 2011 .

[17]  K. Hermans,et al.  Analysis of short circuit current gains by an anti‐reflective textured cover on silicon thin film solar cells , 2013 .

[18]  C. Ballif,et al.  A New View of Microcrystalline Silicon: The Role of Plasma Processing in Achieving a Dense and Stable Absorber Material for Photovoltaic Applications , 2012 .

[19]  B. Rech,et al.  Potential of amorphous silicon for solar cells , 1999 .

[20]  K. Ellmer Resistivity of polycrystalline zinc oxide films: current status and physical limit , 2001 .

[21]  Uwe Rau,et al.  Silicon heterojunction solar cell with amorphous silicon oxide buffer and microcrystalline silicon oxide contact layers , 2012 .

[22]  Carsten Rockstuhl,et al.  The impact of intermediate reflectors on light absorption in tandem solar cells with randomly textured surfaces , 2009 .

[23]  J. Hüpkes,et al.  Chemical Etching of Zinc Oxide for Thin-Film Silicon Solar Cells , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[24]  M. Konagai,et al.  Improvement of Rear Surface Passivation Quality in p-Type Silicon Heterojunction Solar Cells Using Boron-Doped Microcrystalline Silicon Oxide , 2011 .

[25]  J. Krč,et al.  Optical simulation of the role of reflecting interlayers in tandem micromorph silicon solar cells , 2005 .

[26]  B. Holländer,et al.  Boron-doped hydrogenated microcrystalline silicon oxide (μc-SiOx:H) for application in thin-film silicon solar cells , 2012 .

[27]  Doriana Dimova-Malinovska,et al.  Optical and electrical properties of doped amorphous silicon suboxides , 1999 .

[28]  J. Müller,et al.  Development of highly efficient thin film silicon solar cells on texture-etched zinc oxide-coated glass substrates , 2001 .

[29]  Reinhard Carius,et al.  Microcrystalline silicon solar cells deposited at high rates , 2005 .

[30]  Reinhard Carius,et al.  Microcrystalline silicon oxide (μc-SiOx:H) alloys: A versatile material for application in thin film silicon single and tandem junction solar cells , 2012 .

[31]  Liping Zhang,et al.  Novel a-Si:H/μc-Si:H tandem cell with lower optical loss , 2012 .

[32]  Aad Gordijn,et al.  High potential of thin (<1 µm) a‐Si: H/µc‐Si:H tandem solar cells , 2010 .

[33]  V. Smirnov,et al.  Correlation of structural and optoelectronic properties of thin film silicon prepared at the transition from microcrystalline to amorphous growth , 2009 .

[34]  M. Topič,et al.  Simulation of losses in thin‐film silicon modules for different configurations and front contacts , 2008 .

[35]  V. Smirnov,et al.  Microcrystalline silicon n‐i‐p solar cells prepared with microcrystalline silicon oxide (μc‐SiOx:H) n‐layer , 2010 .

[36]  C. Banerjee,et al.  Preparation and characterization of n-type microcrystalline hydrogenated silicon oxide films , 2002 .

[37]  V. Smirnov,et al.  Performance of p- and n-side illuminated microcrystalline silicon solar cells following 2 MeV electron bombardment , 2012 .

[38]  Reinhard Carius,et al.  Improved homogeneity of microcrystalline absorber layer in thin-film silicon tandem solar cells , 2009 .

[39]  S. Klein,et al.  Anti-reflective microcrystalline silicon oxide p-layer for thin-film silicon solar cells on ZnO , 2012 .

[40]  C. Ballif,et al.  Mixed-phase p-type silicon oxide containing silicon nanocrystals and its role in thin-film silicon solar cells , 2010 .

[41]  B. Rech,et al.  Optoelectronic Properties of Thin Amorphous and Micro-Crystalline p-Type Films Developed for Amorphous Silicon-Based Solar Cells , 1996 .

[42]  U. Rau,et al.  Analysis of sub-stoichiometric hydrogenated silicon oxide films for surface passivation of crystalline silicon solar cells , 2012 .

[43]  Helmut Stiebig,et al.  High speed laser processing for monolithical series connection of silicon thin‐film modules , 2008 .

[44]  M. Konagai,et al.  Optimization of Amorphous Silicon Oxide Buffer Layer for High-Efficiency p-Type Hydrogenated Microcrystalline Silicon Oxide/n-Type Crystalline Silicon Heterojunction Solar Cells , 2008 .

[45]  E. Schiff,et al.  Hole drift-mobility measurements in microcrystalline silicon , 2005 .