Limitations of Semidefinite Programs for Separable States and Entangled Games

AbstractSemidefinite programs (SDPs) are a framework for exact or approximate optimization with widespread application in quantum information theory. We introduce a new method for using reductions to construct integrality gaps for SDPs, meaning instances where the SDP value is far from the true optimum. These are based on new limitations on the sum-of-squares (SoS) hierarchy in approximating two particularly important sets in quantum information theory, where previously no $${\omega(1)}$$ω(1) -round integrality gaps were known: 1.The set of separable (i.e. unentangled) states, or equivalently, the $${2 \rightarrow 4}$$2→4 norm of a matrix.2.The set of quantum correlations; i.e. conditional probability distributions achievable with local measurements on a shared entangled state. Integrality gaps for the $${2\rightarrow 4}$$2→4 norm had previously been sought due to its connection to Small-Set Expansion (SSE) and Unique Games (UG). In both cases no-go theorems were previously known based on computational assumptions such as the Exponential Time Hypothesis (ETH) which asserts that 3-SAT requires exponential time to solve. Our unconditional results achieve the same parameters as all of these previous results (for separable states) or as some of the previous results (for quantum correlations). In some cases we can make use of the framework of Lee–Raghavendra–Steurer (LRS) to establish integrality gaps for any SDP extended formulation, not only the SoS hierarchy. Our hardness result on separable states also yields a dimension lower bound of approximate disentanglers, answering a question of Watrous and Aaronson et al.These results can be viewed as limitations on the monogamy principle, the PPT test, the ability of Tsirelson-type bounds to restrict quantum correlations, as well as the SDP hierarchies of Doherty–Parrilo–Spedalieri, Navascues–Pironio–Acin, and Berta–Fawzi–Scholz. Indeed a wide range of past work in quantum information can be described as using an SDP on one of the above two problems and our results put broad limits on these lines of argument.

[1]  L. Masanes All bipartite entangled states are useful for information processing. , 2005, Physical review letters.

[2]  Eric M. Rains A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.

[3]  Stefan Bäuml,et al.  Limitations on quantum key repeaters , 2014, Nature Communications.

[4]  D. Freedman,et al.  Finite Exchangeable Sequences , 1980 .

[5]  Xiaodi Wu,et al.  An Improved Semidefinite Programming Hierarchy for Testing Entanglement , 2015, ArXiv.

[6]  Jing Chen,et al.  Short Multi-Prover Quantum Proofs for SAT without Entangled Measurements , 2010, 1011.0716.

[7]  David A. Mazziotti,et al.  Structure of the one-electron reduced density matrix from the generalized Pauli exclusion principle , 2015 .

[8]  J. S. BELLt Einstein-Podolsky-Rosen Paradox , 2018 .

[9]  David Steurer,et al.  Rounding sum-of-squares relaxations , 2013, Electron. Colloquium Comput. Complex..

[10]  J. W. Helton,et al.  A positivstellensatz for non-commutative polynomials , 2004 .

[11]  Prasad Raghavendra,et al.  Approximating rectangles by juntas and weakly-exponential lower bounds for LP relaxations of CSPs , 2016, STOC.

[12]  Salman Beigi,et al.  Approximating the set of separable states using the positive partial transpose test , 2009, 0902.1806.

[13]  Tsuyoshi Ito,et al.  Oracularization and Two-Prover One-Round Interactive Proofs against Nonlocal Strategies , 2008, 2009 24th Annual IEEE Conference on Computational Complexity.

[14]  C. Fuchs,et al.  Unknown Quantum States: The Quantum de Finetti Representation , 2001, quant-ph/0104088.

[15]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[16]  Attila Pereszlényi,et al.  Multi-Prover Quantum Merlin-Arthur Proof Systems with Small Gap , 2012, ArXiv.

[17]  P. Parrilo,et al.  Complete family of separability criteria , 2003, quant-ph/0308032.

[18]  M. Owari,et al.  Power of symmetric extensions for entanglement detection , 2009, 0906.2731.

[19]  Oded Goldreich,et al.  Computational complexity: a conceptual perspective , 2008, SIGA.

[20]  Stefano Pironio,et al.  Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables , 2009, SIAM J. Optim..

[21]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[22]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[23]  Mihai Putinar,et al.  POSITIVE POLYNOMIALS IN SCALAR AND MATRIX VARIABLES, THE SPECTRAL THEOREM AND OPTIMIZATION , 2006 .

[24]  Salman Beigi,et al.  NP vs QMA_log(2) , 2008, Quantum Inf. Comput..

[25]  Yi-Kai Liu The complexity of the consistency and N-representability problems for quantum states - eScholarship , 2007, 0712.3041.

[26]  Venkatesan Guruswami,et al.  Sum-of-Squares Certificates for Maxima of Random Tensors on the Sphere , 2016, APPROX-RANDOM.

[27]  Madhur Tulsiani CSP gaps and reductions in the lasserre hierarchy , 2009, STOC '09.

[28]  Alexander A. Klyachko,et al.  The Pauli principle and magnetism , 2013, 1311.5999.

[29]  A. Acín,et al.  A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations , 2008, 0803.4290.

[30]  M. Laurent Sums of Squares, Moment Matrices and Optimization Over Polynomials , 2009 .

[31]  Oded Goldreich,et al.  Computational complexity - a conceptual perspective , 2008 .

[32]  Yurii Nesterov,et al.  Squared Functional Systems and Optimization Problems , 2000 .

[33]  Umesh V. Vazirani,et al.  Classical command of quantum systems , 2013, Nature.

[34]  Dima Grigoriev,et al.  Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity , 2001, Theor. Comput. Sci..

[35]  Prasad Raghavendra,et al.  Reductions between Expansion Problems , 2010, 2012 IEEE 27th Conference on Computational Complexity.

[36]  F. Brandão,et al.  Faithful Squashed Entanglement , 2010, 1010.1750.

[37]  Alain Tapp,et al.  A Quantum Characterization Of NP , 2007, computational complexity.

[38]  R. Renner,et al.  A de Finetti representation for finite symmetric quantum states , 2004, quant-ph/0410229.

[39]  A. Klyachko,et al.  The Pauli Principle Revisited , 2008, 0802.0918.

[40]  Prasad Raghavendra,et al.  Lower Bounds on the Size of Semidefinite Programming Relaxations , 2014, STOC.

[41]  Keiji Matsumoto,et al.  Entangled Games Are Hard to Approximate , 2011, SIAM J. Comput..

[42]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[43]  William Slofstra,et al.  Tsirelson’s problem and an embedding theorem for groups arising from non-local games , 2016, Journal of the American Mathematical Society.

[44]  H. Buhrman,et al.  Limit on nonlocality in any world in which communication complexity is not trivial. , 2005, Physical review letters.

[45]  Guillaume Aubrun,et al.  Dvoretzky's theorem and the complexity of entanglement detection , 2015, 1510.00578.

[46]  Yuan Zhou,et al.  Hypercontractivity, sum-of-squares proofs, and their applications , 2012, STOC '12.

[47]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[48]  Zhengfeng Ji,et al.  Detecting consistency of overlapping quantum marginals by separability , 2015, 1509.06591.

[49]  Umesh Vazirani,et al.  Classical command of quantum systems via rigidity of CHSH games , 2012, 1209.0449.

[50]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[51]  Ryan O'Donnell,et al.  Hardness of robust graph isomorphism, Lasserre gaps, and asymmetry of random graphs , 2014, SODA.

[52]  A. Winter,et al.  Remarks on Additivity of the Holevo Channel Capacity and of the Entanglement of Formation , 2002, quant-ph/0206148.

[53]  Aram Wettroth Harrow,et al.  Product-state approximations to quantum ground states , 2013, STOC '13.

[54]  N. Z. Shor An approach to obtaining global extremums in polynomial mathematical programming problems , 1987 .

[55]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[56]  Tsuyoshi Ito,et al.  A Multi-prover Interactive Proof for NEXP Sound against Entangled Provers , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[57]  William Matthews,et al.  Finite Blocklength Converse Bounds for Quantum Channels , 2012, IEEE Transactions on Information Theory.

[58]  B. Barak Sum of Squares Upper Bounds, Lower Bounds, and Open Questions , 2014 .

[59]  David Steurer,et al.  Sum-of-squares proofs and the quest toward optimal algorithms , 2014, Electron. Colloquium Comput. Complex..

[60]  François Le Gall,et al.  On QMA protocols with two short quantum proofs , 2011, Quantum Inf. Comput..

[61]  Alain Tapp,et al.  All Languages in NP Have Very Short Quantum Proofs , 2007, 2009 Third International Conference on Quantum, Nano and Micro Technologies.

[62]  C'ecilia Lancien,et al.  $k$-extendibility of high-dimensional bipartite quantum states , 2015, 1504.06459.

[63]  Aram Wettroth Harrow,et al.  Quantum de Finetti Theorems Under Local Measurements with Applications , 2012, Communications in Mathematical Physics.

[64]  Graeme Mitchison,et al.  A most compendious and facile quantum de Finetti theorem , 2007 .

[65]  Subhash Khot On the power of unique 2-prover 1-round games , 2002, STOC '02.

[66]  L. Trevisan On Khot’s unique games conjecture , 2012 .

[67]  Stefano Pironio,et al.  Sum-of-squares decompositions for a family of Clauser-Horne-Shimony-Holt-like inequalities and their application to self-testing , 2015, 1504.06960.

[68]  Sevag Gharibian,et al.  Strong NP-hardness of the quantum separability problem , 2008, Quantum Inf. Comput..

[69]  David A Mazziotti,et al.  Realization of quantum chemistry without wave functions through first-order semidefinite programming. , 2004, Physical review letters.

[70]  R. F. Werner,et al.  Tsirelson's Problem , 2008, 0812.4305.

[71]  Matthias Christandl,et al.  Entanglement of the Antisymmetric State , 2009, 0910.4151.

[72]  A. Harrow,et al.  Testing Product States, Quantum Merlin-Arthur Games and Tensor Optimization , 2010, JACM.

[73]  Umesh V. Vazirani,et al.  A classical leash for a quantum system: command of quantum systems via rigidity of CHSH games , 2012, ITCS '13.

[74]  Carlos Palazuelos,et al.  Random Constructions in Bell Inequalities: A Survey , 2015, 1502.02175.

[75]  Grant Schoenebeck,et al.  Linear Level Lasserre Lower Bounds for Certain k-CSPs , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[76]  Stephanie Wehner,et al.  The Quantum Moment Problem and Bounds on Entangled Multi-prover Games , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[77]  Bill Fefferman,et al.  The Power of Unentanglement , 2008, 2008 23rd Annual IEEE Conference on Computational Complexity.

[78]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[79]  Thomas Vidick,et al.  Three-Player Entangled XOR Games Are NP-Hard to Approximate , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[80]  Stephen M. Barnett,et al.  Complementarity and Cirel'son's inequality , 1996 .

[81]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[82]  Debbie W. Leung,et al.  Quantum data hiding , 2002, IEEE Trans. Inf. Theory.

[83]  Stephanie Wehner,et al.  Convergence of SDP hierarchies for polynomial optimization on the hypersphere , 2012, ArXiv.

[84]  Mary Beth Ruskai,et al.  Connecting N-representability to Weyl's problem: the one-particle density matrix for N = 3 and R = 6 , 2007, 0706.1855.

[85]  M. Hastings,et al.  Markov entropy decomposition: a variational dual for quantum belief propagation. , 2010, Physical review letters.

[86]  Ashley Montanaro,et al.  Testing Product States, Quantum Merlin-Arthur Games and Tensor Optimization , 2010, JACM.

[87]  Matthias Christandl,et al.  One-and-a-Half Quantum de Finetti Theorems , 2007 .

[88]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[89]  Russell Impagliazzo,et al.  On the Complexity of k-SAT , 2001, J. Comput. Syst. Sci..

[90]  Aurko Roy,et al.  Strong reductions for extended formulations , 2015, IPCO.

[91]  Mario Berta,et al.  Quantum Bilinear Optimization , 2015, SIAM J. Optim..