Automated Processing of Planning Modules in Factory Planning by Means of Constraint Solving Using the Example of Production Segmentation

For the adaption of factories, essential data are required as a basis in factory planning. Often these data are either stored in some form, at some location, or on some data medium, respectively, or are not available at all. Preparing these data for the planning process in a planning-appropriate manner can result in high effort. In order to counteract this situation, a data warehouse system can be used in the context of Business Intelligence for initially providing the data in a centralized and consistent form. The advantages of an up-to-date and consistent data base are shown by an example of the production segmentation. With the planning of the factory adaption by means of planning modules, which can be orchestrated individually, it is possible to process planning tasks automatically or partly automated. A given example of a vice production, which can be produced in four variants, was used to show the benefits and explain the approach in detail. Constraint solving, the modular planning process and the data available in the data warehouse enable the segmentation to be processed automatically and thus reduce planning time.

[1]  Joaquín B. Ordieres Meré,et al.  Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm , 2014, 2014 IEEE International Conference on Industrial Engineering and Engineering Management.

[2]  Michael Henke,et al.  Intelligente Orchestrierung von Planungsprozessen , 2017 .

[3]  Victor Chang,et al.  A review and future direction of agile, business intelligence, analytics and data science , 2016, Int. J. Inf. Manag..

[4]  Frank Weichert,et al.  Towards Autonomously Navigating and Cooperating Vehicles in Cyber-Physical Production Systems , 2015, ML4CPS.

[5]  Tobias Meisen,et al.  Optimized Factory Planning and Process Chain Formation Using Virtual Production Intelligence , 2014 .

[6]  Ray Y. Zhong,et al.  RFID-enabled real-time manufacturing execution system for mass-customization production , 2013 .

[7]  D. Siepmann,et al.  Industrie 4.0 – Grundlagen und Gesamtzusammenhang , 2016 .

[8]  Bernhard Humm,et al.  Architektur von Data Warehouses und Business Intelligence Systemen , 2005, Informatik-Spektrum.

[9]  Nikolaj Bjørner,et al.  Z3: An Efficient SMT Solver , 2008, TACAS.

[10]  U. Bracht,et al.  The Digital Factory between vision and reality , 2005, Comput. Ind..

[11]  M. Zäh,et al.  Die Digitale Fabrik , 2003 .

[12]  H. Schwind Fabrikplanung. Werksentwicklung und Betriebsrationalisierung, Bd. 2: Betriebsanalyse und Feasibility-Studie. Von B. Aggteleky. Carl Hanser Verlag, München–Wien 1982. 1. Aufl., 768 S., zahlr. Abb., geb., Subskriptionspreis bei Abnahme des Gesamtwerkes DM 148, –. Einzelbandpreis DM 184, – , 1983 .

[13]  Uwe Dombrowski,et al.  Visionen für die Digitale Fabrik , 2001 .

[14]  Jörg Franke,et al.  Application and Validation of an Existing Industry 4.0 Guideline for the Development of Specific Recommendations for Implementation , 2016 .

[15]  Gunther Reinhart,et al.  Handbuch Industrie 4.0: Geschäftsmodelle, Prozesse, Technik , 2017 .

[16]  T. Schoenherr,et al.  Data Science, Predictive Analytics, and Big Data in Supply Chain Management: Current State and Future Potential , 2015 .

[17]  Thomas Breyer-Mayländer Management 4.0 – Den digitalen Wandel erfolgreich meistern: Das Kursbuch für Führungskräfte , 2016 .

[18]  Yonggang Wen,et al.  Toward Scalable Systems for Big Data Analytics: A Technology Tutorial , 2014, IEEE Access.

[19]  Hans-Peter Wiendahl,et al.  Handbook Factory Planning and Design , 2015 .

[20]  Birgit Vogel-Heuser,et al.  Coupling heterogeneous production systems by a multi-agent based cyber-physical production system , 2014, 2014 12th IEEE International Conference on Industrial Informatics (INDIN).

[21]  Boris Otto,et al.  Design Principles for Industrie 4.0 Scenarios , 2016, 2016 49th Hawaii International Conference on System Sciences (HICSS).

[22]  Mathias Schmitt,et al.  Towards Industry 4.0 - Standardization as the crucial challenge for highly modular, multi-vendor production systems , 2015 .