Compact, diverse and efficient: globular cluster binaries and gravitational wave parameter estimation challenges

[1]  Reprint of: Mahalanobis, P.C. (1936) "On the Generalised Distance in Statistics." , 2018, Sankhya A.

[2]  E. Berti,et al.  eLISA eccentricity measurements as tracers of binary black hole formation , 2016, 1605.01341.

[3]  S. Vitale Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors. , 2016, Physical review letters.

[4]  C. Mishra,et al.  Gravitational-wave phasing for low-eccentricity inspiralling compact binaries to 3PN order , 2016, 1605.00304.

[5]  M. Mapelli Massive black hole binaries from runaway collisions: the impact of metallicity , 2016, 1604.03559.

[6]  P. Miocchi,et al.  GLOBULAR CLUSTERS HOSTING INTERMEDIATE-MASS BLACK HOLES: NO MASS-SEGREGATION BASED CANDIDATES , 2016, 1604.03554.

[7]  Y. Lithwick,et al.  DYNAMICAL CONSTRAINTS ON THE ORIGIN OF HOT AND WARM JUPITERS WITH CLOSE FRIENDS , 2016, 1604.01781.

[8]  R. Bork,et al.  Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy , 2016, 1604.00439.

[9]  Joshua D. Knowles,et al.  Fifty years of pulsar candidate selection: from simple filters to a new principled real-time classification approach , 2016, Monthly Notices of the Royal Astronomical Society.

[10]  S. Privitera,et al.  Searching for Gravitational Waves from Compact Binaries with Precessing Spins , 2016, 1603.02444.

[11]  I. Mandel,et al.  The chemically homogeneous evolutionary channel for binary black hole mergers: rates and properties of gravitational-wave events detectable by advanced LIGO , 2016, 1603.02291.

[12]  S. Chatterjee,et al.  BINARY BLACK HOLES IN DENSE STAR CLUSTERS: EXPLORING THE THEORETICAL UNCERTAINTIES , 2016, 1603.00884.

[13]  M. Lyutikov Fermi GBM signal contemporaneous with GW150914 - an unlikely association , 2016, 1602.07352.

[14]  A. Sesana The promise of multi-band gravitational wave astronomy , 2016, 1602.06951.

[15]  D. Holz,et al.  The origin and evolution of LIGO's first gravitational-wave source , 2016 .

[16]  The Ligo Scientific Collaboration,et al.  Observation of Gravitational Waves from a Binary Black Hole Merger , 2016, 1602.03837.

[17]  B. A. Boom,et al.  THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914 , 2016, 1602.03842.

[18]  B. A. Boom,et al.  GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes. , 2016, Physical review letters.

[19]  Y. Wang,et al.  GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. , 2016, Physical review. D..

[20]  The LIGO Scientific Collaboration,et al.  Astrophysical Implications of the Binary Black-Hole Merger GW150914 , 2016, 1602.03846.

[21]  The LIGO Scientific Collaboration,et al.  GW150914: The Advanced LIGO Detectors in the Era of First Discoveries , 2016, 1602.03838.

[22]  S. Privitera,et al.  Implementing a search for gravitational waves from non-precessing, spinning binary black holes , 2016, 1602.03509.

[23]  A. Gopakumar,et al.  Frequency and time domain inspiral templates for comparable mass compact binaries in eccentric orbits , 2016, 1602.03081.

[24]  Frederic A. Rasio,et al.  Binary Black Hole Mergers from Globular Clusters: Masses, Merger Rates, and the Impact of Stellar Evolution , 2016, 1602.02444.

[25]  Lawrence E. Kidder,et al.  Effects of Neutron-Star Dynamic Tides on Gravitational Waveforms within the Effective-One-Body Approach. , 2016, Physical review letters.

[26]  S. Chatterjee,et al.  Million-body star cluster simulations: Comparisons between Monte Carlo and direct N-body , 2016, 1601.04227.

[27]  N. Langer,et al.  A new route towards merging massive black holes , 2016, 1601.03718.

[28]  I. Mandel,et al.  Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries , 2015, 1601.00007.

[29]  Marco Drago,et al.  Proposed search for the detection of gravitational waves from eccentric binary black holes , 2015, 1511.09240.

[30]  Inference on gravitational waves from coalescences of stellar-mass compact objects and intermediate-mass black holes , 2015, 1511.01431.

[31]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal , 2015, 1508.07250.

[32]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era , 2015, 1508.07253.

[33]  Christian Reisswig,et al.  Energetics and phasing of nonprecessing spinning coalescing black hole binaries , 2015, 1506.08457.

[34]  I. Mandel,et al.  Dynamic temperature selection for parallel tempering in Markov chain Monte Carlo simulations , 2015, 1501.05823.

[35]  N. M. Brown,et al.  Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo , 2013, Living Reviews in Relativity.

[36]  M. Purrer Frequency domain reduced order model of aligned-spin effective-one-body waveforms with generic mass-ratios and spins , 2015, 1512.02248.

[37]  Y. Wang,et al.  All-sky search for long-duration gravitational wave transients with initial LIGO , 2016 .

[38]  Richard O'Shaughnessy,et al.  COMPACT BINARY MERGER RATES: COMPARISON WITH LIGO/VIRGO UPPER LIMITS , 2015, 1510.04615.

[39]  Vicky Kalogera,et al.  BLACK HOLE MERGERS AND BLUE STRAGGLERS FROM HIERARCHICAL TRIPLES FORMED IN GLOBULAR CLUSTERS , 2015, 1509.05080.

[40]  E. Ramirez-Ruiz,et al.  THE CLOSE STELLAR COMPANIONS TO INTERMEDIATE-MASS BLACK HOLES , 2015, 1508.07000.

[41]  Leo P. Singer,et al.  WHOOMP! (There it is): Rapid Bayesian position reconstruction for gravitational-wave transients , 2015 .

[42]  Alessandro Bressan,et al.  The mass spectrum of compact remnants from the parsec stellar evolution tracks , 2015, 1505.05201.

[43]  A. Sesana,et al.  Scattering experiments meet N-body – I. A practical recipe for the evolution of massive black hole binaries in stellar environments , 2015, 1505.02062.

[44]  Bharath Pattabiraman,et al.  Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO. , 2015, Physical review letters.

[45]  B. S. Sathyaprakash,et al.  Missing Link: Bayesian detection and measurement of intermediate-mass black-hole binaries , 2015, 1504.04766.

[46]  I. Mandel,et al.  Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors. , 2015, Physical review letters.

[47]  T. Littenberg,et al.  NEUTRON STARS VERSUS BLACK HOLES: PROBING THE MASS GAP WITH LIGO/VIRGO , 2015, 1503.03179.

[48]  I. Mandel,et al.  Distinguishing types of compact-object binaries using the gravitational-wave signatures of their mergers , 2015, 1503.03172.

[49]  Ilya Mandel,et al.  Efficient method for measuring the parameters encoded in a gravitational-wave signal , 2015, 1502.05407.

[50]  C. Pankow,et al.  Novel scheme for rapid parallel parameter estimation of gravitational waves from compact binary coalescences , 2015, 1502.04370.

[51]  R. Mushotzky,et al.  A 400 solar mass black hole in the Ultraluminous X-ray source M82 X-1 accreting close to its Eddington limit , 2015, 1501.03180.

[52]  H. Perets,et al.  Secular dynamics of hierarchical quadruple systems: the case of a triple system orbited by a fourth body , 2014, 1412.3115.

[53]  J. K. Blackburn,et al.  Searching for stochastic gravitational waves using data from the two co-located LIGO Hanford detectors , 2020 .

[54]  Neil J. Cornish,et al.  Bayesian inference for spectral estimation of gravitational wave detector noise , 2014, 1410.3852.

[55]  P. Graff,et al.  Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.

[56]  F. Ohme,et al.  Towards models of gravitational waveforms from generic binaries: II. Modelling precession effects with a single effective precession parameter , 2014, 1408.1810.

[57]  Chris L. Fryer,et al.  DOUBLE COMPACT OBJECTS. III. GRAVITATIONAL-WAVE DETECTION RATES , 2014, 1405.7016.

[58]  J. Gair,et al.  Novel method for incorporating model uncertainties into gravitational wave parameter estimates. , 2014, Physical review letters.

[59]  P. Graff,et al.  PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA , 2014, 1411.6934.

[60]  F. Rasio,et al.  THE DYNAMICAL EVOLUTION OF STELLAR BLACK HOLES IN GLOBULAR CLUSTERS , 2014, 1409.0866.

[61]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[62]  Richard O'Shaughnessy,et al.  Accurate and efficient waveforms for compact binaries on eccentric orbits , 2014, 1408.3406.

[63]  J. Lombardi,et al.  IMPLICATIONS OF THE DELAYED 2013 OUTBURST OF ESO 243-49 HLX-1 , 2014, 1408.1819.

[64]  C. Moore,et al.  Gravitational-wave sensitivity curves , 2014, 1408.0740.

[65]  Y. Zlochower,et al.  Remnant mass, spin, and recoil from spin aligned black-hole binaries , 2014, 1406.7295.

[66]  D. Dale,et al.  TOWARD COMPLETE STATISTICS OF MASSIVE BINARY STARS: PENULTIMATE RESULTS FROM THE CYGNUS OB2 RADIAL VELOCITY SURVEY , 2014, 1406.6655.

[67]  S. Klimenko,et al.  Improved upper limits on the stochastic gravitational-wave background from 2009-2010 LIGO and Virgo data. , 2014, Physical review letters.

[68]  J. K. Blackburn,et al.  First All-sky Search for Continuous Gravitational Waves from Unknown Sources in Binary Systems , 2022 .

[69]  J. K. Blackburn,et al.  Search for gravitational radiation from intermediate mass black hole binaries in data from the second LIGO-Virgo joint science run , 2014, 1404.2199.

[70]  J. K. Blackburn,et al.  Search for Gravitational Wave Ringdowns from Perturbed Intermediate Mass Black Holes in Ligo-virgo Data from 2005–2010 , 2022 .

[71]  Chris L. Fryer,et al.  THE FORMATION AND GRAVITATIONAL-WAVE DETECTION OF MASSIVE STELLAR BLACK HOLE BINARIES , 2014, 1403.0677.

[72]  M. S. Shahriar,et al.  Implementation of an F ?> -statistic all-sky search for continuous gravitational waves in Virgo VSR1 data , 2014, 1402.4974.

[73]  M. Purrer Frequency domain reduced order models for gravitational waves from aligned-spin compact binaries , 2014, 1402.4146.

[74]  Farhan Feroz,et al.  Reconstructing the sky location of gravitational-wave detected compact binary systems: methodology for testing and comparison , 2013, 1312.6013.

[75]  Michael Boyle,et al.  Effective-one-body model for black-hole binaries with generic mass ratios and spins , 2013, Physical Review D.

[76]  J. K. Blackburn,et al.  Application of a Hough search for continuous gravitational waves on data from the fifth LIGO science run , 2013, 1311.2409.

[77]  Marc Favata Systematic parameter errors in inspiraling neutron star binaries. , 2013, Physical review letters.

[78]  S. Klimenko,et al.  Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors. , 2013, Physical review letters.

[79]  J. K. Blackburn,et al.  Gravitational waves from known pulsars: Results from the initial detector era , 2013, 1309.4027.

[80]  J Korea,et al.  Parameter estimation of gravitational waves from nonprecessing black hole-neutron star inspirals with higher harmonics: Comparing Markov-chain Monte Carlo posteriors to an effective Fisher matrix , 2013, 1308.4704.

[81]  Norman Murray,et al.  BLACK HOLE TRIPLE DYNAMICS: A BREAKDOWN OF THE ORBIT AVERAGE APPROXIMATION AND IMPLICATIONS FOR GRAVITATIONAL WAVE DETECTIONS , 2013, 1308.3674.

[82]  Frank Ohme,et al.  Twist and shout: A simple model of complete precessing black-hole-binary gravitational waveforms , 2013, 1308.3271.

[83]  Yi Pan,et al.  Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism , 2013, 1307.6232.

[84]  Luc Blanchet,et al.  Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.

[85]  C. Wegg,et al.  Production of EMRIs in supermassive black hole binaries , 2013, 1310.5745.

[86]  J. K. Blackburn,et al.  Directed search for continuous gravitational waves from the Galactic center , 2013, 1309.6221.

[87]  Enrico Ramirez-Ruiz,et al.  THE FORMATION OF ECCENTRIC COMPACT BINARY INSPIRALS AND THE ROLE OF GRAVITATIONAL WAVE EMISSION IN BINARY–SINGLE STELLAR ENCOUNTERS , 2013, 1308.2964.

[88]  I. Mandel,et al.  Inadequacies of the Fisher information matrix in gravitational-wave parameter estimation , 2013, 1308.1397.

[89]  D. Merritt Dynamics and Evolution of Galactic Nuclei , 2013 .

[90]  M. Pürrer,et al.  Testing the validity of the single-spin approximation in inspiral-merger-ringdown waveforms , 2013, 1306.2320.

[91]  J. K. Blackburn,et al.  Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network , 2013, 1304.1775.

[92]  I. Mandel,et al.  Studies of waveform requirements for intermediate mass-ratio coalescence searches with advanced gravitational-wave detectors , 2013 .

[93]  Chris L. Fryer,et al.  WHEN CAN GRAVITATIONAL-WAVE OBSERVATIONS DISTINGUISH BETWEEN BLACK HOLES AND NEUTRON STARS? , 2013, 1301.5616.

[94]  W. Farr,et al.  RETENTION OF STELLAR-MASS BLACK HOLES IN GLOBULAR CLUSTERS , 2012, 1211.3372.

[95]  S. Fairhurst,et al.  Degeneracy between mass and spin in black-hole-binary waveforms , 2012, 1211.0546.

[96]  J. Gair,et al.  Observing the Galaxy's massive black hole with gravitational wave bursts , 2012, 1210.2778.

[97]  E. Ochsner,et al.  Gravitational waves from black hole-neutron star binaries: Effective Fisher matrices and parameter estimation using higher harmonics , 2012, 1209.4494.

[98]  B. S. Sathyaprakash,et al.  Searching for gravitational waves from binary coalescence , 2012, 1208.3491.

[99]  F. Rasio,et al.  CONSTRAINING INTERMEDIATE-MASS BLACK HOLES IN GLOBULAR CLUSTERS , 2012, 1207.2497.

[100]  Bence Kocsis,et al.  RESONANT POST-NEWTONIAN ECCENTRICITY EXCITATION IN HIERARCHICAL THREE-BODY SYSTEMS , 2012, 1206.4316.

[101]  Pau Amaro-Seoane,et al.  Investigating the retention of intermediate-mass black holes in star clusters using N-body simulations , 2011, 1108.5175.

[102]  N. Scott,et al.  THE MBH–LSPHEROID RELATION AT HIGH AND LOW MASSES, THE QUADRATIC GROWTH OF BLACK HOLES, AND INTERMEDIATE-MASS BLACK HOLE CANDIDATES , 2012, 1211.3199.

[103]  J. Lattimer The Nuclear Equation of State and Neutron Star Masses , 2012, 1305.3510.

[104]  J. Kruijssen,et al.  On the fraction of star formation occurring in bound stellar clusters , 2012, 1208.2963.

[105]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[106]  Alexander H. Nitz,et al.  Detecting binary neutron star systems with spin in advanced gravitational-wave detectors , 2012, 1207.6406.

[107]  P. Schmidt,et al.  Towards models of gravitational waveforms from generic binaries: A simple approximate mapping between precessing and nonprecessing inspiral signals , 2012, 1207.3088.

[108]  W. Farr,et al.  MASS MEASUREMENTS OF BLACK HOLES IN X-RAY TRANSIENTS: IS THERE A MASS GAP? , 2012, 1205.1805.

[109]  S. Aarseth,et al.  Mergers and ejections of black holes in globular clusters , 2012, 1202.4688.

[110]  K. S. Thorne,et al.  All-sky search for gravitational-wave bursts in the second joint LIGO-Virgo run , 2012, 1202.2788.

[111]  Michael Boyle,et al.  Prototype effective-one-body model for nonprecessing spinning inspiral-merger-ringdown waveforms , 2012, 1202.0790.

[112]  J. K. Blackburn,et al.  Search for gravitational waves from intermediate mass binary black holes , 2012, 1201.5999.

[113]  Jordi Burguet-Castell,et al.  Detecting transient gravitational waves in non-Gaussian noise with partially redundant analysis methods , 2012, 1201.2964.

[114]  C. Pankow,et al.  Likelihood-ratio ranking of gravitational-wave candidates in a non-Gaussian background. , 2012, 1201.2959.

[115]  J. Gair,et al.  Verifying the no-hair property of massive compact objects with intermediate-mass-ratio inspirals in advanced gravitational-wave detectors , 2011, 1112.1404.

[116]  Kentaro Somiya,et al.  Detector configuration of KAGRA–the Japanese cryogenic gravitational-wave detector , 2011, 1111.7185.

[117]  Chris L. Fryer,et al.  MISSING BLACK HOLES UNVEIL THE SUPERNOVA EXPLOSION MECHANISM , 2011, 1110.1635.

[118]  F. Ohme Analytical meets numerical relativity: status of complete gravitational waveform models for binary black holes , 2011, 1111.3737.

[119]  Farhan Feroz,et al.  BAMBI: blind accelerated multimodal Bayesian inference , 2011, 1110.2997.

[120]  Hua Feng,et al.  Ultraluminous X-ray sources in the Chandra and XMM-Newton era , 2011, 1109.1610.

[121]  J. K. Blackburn,et al.  Directional limits on persistent gravitational waves using LIGO S5 science data. , 2011, Physical review letters.

[122]  Erin Kara,et al.  TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE , 2011, 1107.2665.

[123]  M. Servillat,et al.  THE COOL ACCRETION DISK IN ESO 243-49 HLX-1: FURTHER EVIDENCE OF AN INTERMEDIATE-MASS BLACK HOLE , 2011, 1104.2614.

[124]  Bernard F. Schutz,et al.  Networks of gravitational wave detectors and three figures of merit , 2011, 1102.5421.

[125]  C. Will,et al.  Stellar Dynamics of Extreme-Mass-Ratio Inspirals , 2011, 1102.3180.

[126]  I. Mandel,et al.  THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES , 2010, 1011.1459.

[127]  J. Key,et al.  Characterizing spinning black hole binaries in eccentric orbits with LISA , 2010, 1006.3759.

[128]  E. Poisson,et al.  The Motion of Point Particles in Curved Spacetime , 2003, Living reviews in relativity.

[129]  M. Giersz,et al.  Compact binaries in star clusters – II. Escapers and detection rates , 2010, 1008.5060.

[130]  R. Narayan,et al.  THE BLACK HOLE MASS DISTRIBUTION IN THE GALAXY , 2010, 1006.2834.

[131]  P. Jetzer,et al.  GRAVITATIONAL WAVES FROM INTERMEDIATE-MASS BLACK HOLES IN YOUNG CLUSTERS , 2010, 1006.1664.

[132]  P. Ajith,et al.  Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries , 2010, 1005.3306.

[133]  E. Porter,et al.  Eccentric Massive Black Hole Binaries in LISA I : The Detection Capabilities of Circular Templates , 2010, 1005.5296.

[134]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[135]  Chris L. Fryer,et al.  THE EFFECT OF METALLICITY ON THE DETECTION PROSPECTS FOR GRAVITATIONAL WAVES , 2010, 1004.0386.

[136]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[137]  Hiroyuki Nakano,et al.  Intermediate-mass-ratio black-hole binaries: numerical relativity meets perturbation theory. , 2010, Physical review letters.

[138]  I. Mandel Parameter estimation on gravitational waves from multiple coalescing binaries , 2009, 0912.5531.

[139]  A. Buonanno,et al.  An improved effective-one-body Hamiltonian for spinning black-hole binaries , 2009, 0912.3517.

[140]  A. Vecchio,et al.  Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network , 2009, 0911.3820.

[141]  M. J. Benacquista,et al.  Compact binaries in star clusters – I. Black hole binaries inside globular clusters , 2009, 0910.0546.

[142]  Pau Amaro-Seoane,et al.  DETECTION OF IMBHs WITH GROUND-BASED GRAVITATIONAL WAVE OBSERVATORIES: A BIOGRAPHY OF A BINARY OF BLACK HOLES, FROM BIRTH TO DEATH , 2009, 0910.0254.

[143]  B Johnson,et al.  An upper limit on the stochastic gravitational-wave background of cosmological origin , 2009, Nature.

[144]  Yi Pan,et al.  Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors , 2009, 0907.0700.

[145]  Didier Barret,et al.  An intermediate-mass black hole of over 500 solar masses in the galaxy ESO 243-49 , 2009, Nature.

[146]  F. Feroz,et al.  Use of the MULTINEST algorithm for gravitational wave data analysis , 2009, 0904.1544.

[147]  Bernard F. Schutz,et al.  Physics, Astrophysics and Cosmology with Gravitational Waves , 2009, Living reviews in relativity.

[148]  Simon Portegies Zwart,et al.  SAPPORO: A way to turn your graphics cards into a GRAPE-6 , 2009, ArXiv.

[149]  Thibault Damour,et al.  Improved analytical description of inspiralling and coalescing black-hole binaries , 2009, 0902.0136.

[150]  et al,et al.  Search for Gravitational Waves from Low Mass Binary Coalescences in the First Year of Ligo's S5 Data , 2022 .

[151]  M. Miller Intermediate-mass black holes as LISA sources , 2008, 0812.3028.

[152]  D. Vanbeveren The evolution of massive and very massive stars in clusters , 2008, 0810.4781.

[153]  Eric Poisson,et al.  Gravitational Waves, Volume 1: Theory and Experiments , 2008 .

[154]  T. Roberts,et al.  Testing the Paradigm that Ultraluminous X-Ray Sources as a Class Represent Accreting Intermediate-Mass Black Holes , 2008, 0807.1547.

[155]  M. Stiavelli,et al.  Intermediate-Mass Black Hole Induced Quenching of Mass Segregation in Star Clusters , 2008, 0806.4187.

[156]  T. Maccarone,et al.  Radio observations of NGC 2808 and other globular clusters: constraints on intermediate-mass black holes , 2008, 0806.2387.

[157]  I. Mandel,et al.  Parameter estimation of spinning binary inspirals using Markov chain Monte Carlo , 2008, 0805.1689.

[158]  T. Damour,et al.  Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling , 2008, 0803.0915.

[159]  I. Mandel,et al.  Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries , 2007, 0710.1897.

[160]  D. Merritt,et al.  IMPLEMENTING FEW-BODY ALGORITHMIC REGULARIZATION WITH POST-NEWTONIAN TERMS , 2007, 0709.3367.

[161]  J. Gair,et al.  Observable properties of orbits in exact bumpy spacetimes , 2007, 0708.0628.

[162]  M. Vallisneri Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects , 2007, gr-qc/0703086.

[163]  A. Zezas,et al.  Compact Object Modeling with the StarTrack Population Synthesis Code , 2005, astro-ph/0511811.

[164]  Duncan A. Brown,et al.  Prospects for detection of gravitational waves from intermediate-mass-ratio inspirals. , 2007, Physical review letters.

[165]  I. Mandel Spin distribution following minor mergers and the effect of spin on the detection range for low-mass-ratio inspirals , 2007, 0707.0711.

[166]  E.P.J. van den Heuvel,et al.  UvA-DARE ( Digital Academic Repository ) A catalogue of low-mass X-ray binaries , 2022 .

[167]  Duncan A. Brown,et al.  Rates and Characteristics of Intermediate Mass Ratio Inspirals Detectable by Advanced LIGO , 2007, 0705.0285.

[168]  J. Gair,et al.  Astrophysics, detection and science applications of intermediate- and extreme mass-ratio inspirals , 2007 .

[169]  Jonathan R. Gair,et al.  Intermediate and extreme mass-ratio inspirals—astrophysics, science applications and detection using LISA , 2007, astro-ph/0703495.

[170]  José A. González,et al.  Maximum kick from nonspinning black-hole binary inspiral. , 2006, Physical review letters.

[171]  P. Hut,et al.  Star clusters with primordial binaries – III. Dynamical interaction between binaries and an intermediate-mass black hole , 2006, astro-ph/0610342.

[172]  D. Heggie,et al.  Star clusters with primordial binaries ¿ II. Dynamical evolution of models in a tidal field , 2006, astro-ph/0602409.

[173]  K. Postnov,et al.  The Evolution of Compact Binary Star Systems , 2006, Living reviews in relativity.

[174]  R. O’Shaughnessy,et al.  Formation of double compact objects , 2006, astro-ph/0612144.

[175]  M. Trenti Dynamical evidence for intermediate mass black holes in old globular clusters , 2006, astro-ph/0612040.

[176]  P. Amaro-Seoane,et al.  Intermediate-Mass Black Holes in Colliding Clusters: Implications for Lower Frequency Gravitational-Wave Astronomy , 2006, astro-ph/0610478.

[177]  R. O’Shaughnessy,et al.  Observing IMBH-IMBH Binary Coalescences via Gravitational Radiation , 2006, astro-ph/0605732.

[178]  D. Merritt,et al.  Algorithmic regularization with velocity-dependent forces , 2006, astro-ph/0605054.

[179]  M. Hobson,et al.  General Relativity: An Introduction for Physicists , 2006 .

[180]  C. Will,et al.  Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA , 2005, gr-qc/0512160.

[181]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[182]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2005, Physical review letters.

[183]  M. Miller,et al.  Three-Body Dynamics with Gravitational Wave Emission , 2005, astro-ph/0509885.

[184]  John Skilling,et al.  Data Analysis-A Bayesian Tutorial: Second Edition , 2006 .

[185]  F. Pretorius Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[186]  Daniel E. Holz,et al.  Using Gravitational-Wave Standard Sirens , 2005, astro-ph/0504616.

[187]  Piotr Jaranowski,et al.  Formalism and Sample Applications : The Gaussian Case , 2005 .

[188]  Heidelberg,et al.  Runaway collisions in young star clusters – I. Methods and tests , 2005, astro-ph/0503129.

[189]  E. Pfahl Binary Disruption by Massive Black Holes in Globular Clusters , 2005, astro-ph/0501326.

[190]  Bruce Allen χ2 time-frequency discriminator for gravitational wave detection , 2005 .

[191]  M. Miller,et al.  Growth of Intermediate-Mass Black Holes in Globular Clusters , 2004, astro-ph/0402532.

[192]  L. Wen On the Eccentricity Distribution of Coalescing Black Hole Binaries Driven by the Kozai Mechanism in Globular Clusters , 2002, astro-ph/0211492.

[193]  The Relativistic binary pulsar B1913+16 , 2002, astro-ph/0211217.

[194]  M. Miller,et al.  Gravitational Radiation from Intermediate-Mass Black Holes , 2002, astro-ph/0206404.

[195]  J. Creighton,et al.  Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise. II: Bayesian analyses , 2002, gr-qc/0205015.

[196]  M. Miller,et al.  Production of intermediate-mass black holes in globular clusters , 2001, astro-ph/0106188.

[197]  J. Creighton,et al.  Robust statistics for deterministic and stochastic gravitational waves in non-Gaussian noise: Frequentist analyses , 2001, gr-qc/0105100.

[198]  C. Will The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.

[199]  T. Tsuru,et al.  Formation of Intermediate-Mass Black Holes in Circumnuclear Regions of Galaxies , 2000, astro-ph/0002389.

[200]  T. Damour,et al.  Transition from inspiral to plunge in binary black hole coalescences , 2000, gr-qc/0001013.

[201]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[202]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1998, gr-qc/9811091.

[203]  B. Owen,et al.  Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement , 1998, gr-qc/9808076.

[204]  S. Mikkola,et al.  The Kozai Mechanism and the Stability of Planetary Orbits in Binary Star Systems , 1997 .

[205]  S. Tremaine,et al.  Chaotic variations in the eccentricity of the planet orbiting 16 Cygni B , 1997, Nature.

[206]  G. Quinlan The dynamical evolution of massive black hole binaries i , 1996, astro-ph/9706298.

[207]  Blanchet,et al.  Gravitational-radiation damping of compact binary systems to second post-Newtonian order. , 1995, Physical review letters.

[208]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[209]  Echeverría,et al.  Gravitational-wave measurements of the mass and angular momentum of a black hole. , 1989, Physical review. D, Particles and fields.

[210]  T. Damour,et al.  General relativistic celestial mechanics of binary systems. II. The post-newtonian timing formula , 1986 .

[211]  B. Schutz Gravitational waves on the back of an envelope , 1984 .

[212]  J. Taylor DISCOVERY OF A PULSAR IN A BINARY SYSTEM , 1975 .

[213]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[214]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[215]  M. L. Lidov The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies , 1962 .

[216]  Yoshihide Kozai,et al.  Secular perturbations of asteroids with high inclination and eccentricity , 1962 .

[217]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[218]  Albert Einstein,et al.  Approximative Integration of the Field Equations of Gravitation , 1916 .