Diffusion of water in clays – microscopic simulation and neutron scattering

Abstract The dynamics of water in porous charged media (montmorillonite clay) is investigated on the picosecond-timescale by quasi-elastic neutron scattering (time-of-flight (TOF) and neutron spin echo (NSE) techniques) and classical molecular dynamics simulations. Correspondence is discussed not only in terms of integrated quantities such as diffusion coefficients but also more directly on the level of intermediate scattering functions. Both simulated and experimental water diffusion coefficients are of the order of 5–10 × 10 −10  m 2  s −1 . Closer analysis suggests that, unlike NSE, TOF and simulation underestimate relaxation times in the low- Q region due to insufficiently large correlation times probed. Comparison between experimental and simulated dynamics is rendered difficult by the features of the real montmorillonite clay (interstratification, mesoporous water) omitted in the model. For the de-coupling of phenomena in a real clay, a more complete set of data for the montmorillonite clay (different ions, hydration states) or the use of other, in some respect more homogeneous clays (hectorite, vermiculite) is suggested.

[1]  L. Schramm,et al.  Influence of Exchangeable Cation Composition on the Size and Shape of Montmorillonite Particles in Dilute Suspension , 1982 .

[2]  M. Telling,et al.  Quasi-elastic neutron scattering , 2001 .

[3]  J. Dufrêche,et al.  Temperature effect in a montmorillonite clay at low hydration—microscopic simulation , 2004 .

[4]  C. E. Weaver The Distribution and Identification of Mixed-layer Clays in Sedimentary Rocks1 , 1955 .

[5]  P. L. Hall,et al.  Quasi-elastic neutron-scattering studies of the dynamics of intercalated molecules in charge-deficient layer silicates. Part. 1.—Temperature dependence of the scattering from water in Ca2+-exchanged montmorillonite , 1984 .

[6]  P. Coveney,et al.  Molecular Modeling of Clay Hydration: A Study of Hysteresis Loops in the Swelling Curves of Sodium Montmorillonites , 1995 .

[7]  P. L. Hall,et al.  Quasi-elastic neutron-scattering studies of intercalated molecules in charge-deficient layer silicates. Part 2.—High-resolution measurements of the diffusion of water in montmorillonite and vermiculite , 1985 .

[8]  R. Golub,et al.  A neutron resonance spin echo spectrometer for quasi-elastic and inelastic scattering , 1987 .

[9]  R. Golub,et al.  Neutron resonance spin echo, bootstrap method for increasing the effective magnetic field , 1988 .

[10]  A. Delville Structure of liquids at a solid interface: an application to the swelling of clay by water , 1992 .

[11]  R. Thomas,et al.  Diffusion of Water in Li-Montmorillonite Studied by Quasielastic Neutron Scattering , 1981 .

[12]  E. Mamontov Dynamics of surface water in ZrO2 studied by quasielastic neutron scattering. , 2004, The Journal of chemical physics.

[13]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[14]  G. Sposito,et al.  Computer Simulation of Interlayer Molecular Structure in Sodium Montmorillonite Hydrates , 1995 .

[15]  N. Skipper,et al.  Molecular dynamics simulation of methane in sodium montmorillonite clay hydrates at elevated pressures and temperatures , 2001 .

[16]  J. Dufrêche,et al.  Na/Cs montmorillonite: temperature activation of diffusion by simulation , 2004 .

[17]  O. Borodin,et al.  Temperature dependence of water dynamics in poly(ethylene oxide)/water solutions from molecular dynamics simulations and quasielastic neutron scattering experiments , 2002 .

[18]  Ullo Molecular-dynamics study of translational motions in water as probed through quasielastic neutron scattering. , 1987, Physical review. A, General physics.

[19]  G. Sposito,et al.  Monte Carlo and Molecular Dynamics Simulations of Interfacial Structure in Lithium-Montmorillonite Hydrates , 1997 .

[20]  M. Bellissent-Funel,et al.  Dynamics of water studied by coherent and incoherent inelastic neutron scattering , 1991 .

[21]  G. Sposito,et al.  Molecular Simulation of Interlayer Structure and Dynamics in 12.4 Å Cs-Smectite Hydrates. , 2001, Journal of colloid and interface science.

[22]  S. H. Chen,et al.  Molecular-dynamics study of incoherent quasielastic neutron-scattering spectra of supercooled water , 1997 .

[23]  F. Mezei Neutron spin echo: A new concept in polarized thermal neutron techniques , 1972 .

[24]  M. Chávez-Páez,et al.  Monte Carlo simulations of Ca-montmorillonite hydrates , 2001 .

[25]  R. Lechner Effects of low-dimensionality in solid-state protonic conductors , 1995 .

[26]  W. Howells,et al.  Quasielastic neutron scattering of two-dimensional water in a vermiculite clay , 2000 .

[27]  I. R. Mcdonald,et al.  Theory of simple liquids , 1998 .

[28]  M. Bee,et al.  Quasielastic Neutron Scattering, Principles and Applications in Solid State Chemistry, Biology and Materials Science , 1988 .

[29]  J. Breu,et al.  Fehlordnung bei Smectiten in Abhängigkeit vom Zwischenschichtkation , 2003 .

[30]  M. Molera,et al.  Diffusion of 22Na+, 85Sr2+, 134Cs+ and 57Co2+ in bentonite clay compacted to different densities: experiments and modeling , 2002 .

[31]  A. Dianoux,et al.  Incoherent scattering law for neutron quasi-elastic scattering in liquid crystals , 1975 .

[32]  P. L. Hall,et al.  Incoherent neutron scattering functions for random jump diffusion in bounded and infinite media , 1981 .

[33]  D. Smith Molecular Computer Simulations of the Swelling Properties and Interlayer Structure of Cesium Montmorillonite , 1998 .

[34]  D. Bougeard,et al.  Structure and dynamics of interlayer species in a hydrated Zn-vermiculite. A molecular dynamics study , 2004 .

[35]  M. Cathelineau,et al.  Experimental synthesis of chlorite from smectite at 300°C in the presence of metallic Fe , 2003, Clay Minerals.

[36]  L. Michot,et al.  Mechanism of Adsorption and Desorption of Water Vapor by Homoionic Montmorillonite: 3. The Mg2+, Ca2+, Sr2+ and Ba2+ Exchanged Forms , 1997 .

[37]  D. Bougeard,et al.  Structure and dynamics of the interlayer water in an uncharged 2 ∶ 1 clay , 2003 .

[38]  J. Swenson,et al.  A neutron spin-echo study of confined water , 2001 .

[39]  Peter V. Coveney,et al.  Monte Carlo Molecular Modeling Studies of Hydrated Li-, Na-, and K-Smectites: Understanding the Role of Potassium as a Clay Swelling Inhibitor , 1995 .

[40]  D. Lévesque,et al.  Microscopic simulation of structure and dynamics of water and counterions in a monohydrated montmorillonite , 2002 .

[41]  P. Coveney,et al.  Computer simulation evidence for enthalpy driven dehydration of smectite clays at elevated pressures and temperatures , 1997 .

[42]  E. Mamontov Comment on "Quasielastic neutron scattering of two-dimensional water in a vermiculite clay" [J. Chem. Phys. 113, 2873 (2000)] and "A neutron spin-echo study of confined water" [J. Chem. Phys. 115, 11299 (2001)]. , 2004, The Journal of chemical physics.

[43]  A. Masion,et al.  Mechanism of Adsorption and Desorption of Water Vapor by Homoionic Montmorillonites: 2. The Li+ Na+, K+, Rb+ and Cs+-Exchanged Forms , 1995 .

[44]  S. H. Chen,et al.  Water in confined geometries , 1997 .

[45]  R. Golub,et al.  A high resolution neutron spectrometer for quasielastic scattering on the basis of spin-echo and magnetic resonance , 1987 .

[46]  S. H. Chen,et al.  Slow dynamics of water molecules in confined space , 1993 .

[47]  R. Wyckoff Miscellaneous inorganic compounds, silicates, and basic structural information , 1968 .

[48]  Jean-Maurice Cases,et al.  Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite. 1. The sodium-exchanged form , 1992 .

[49]  P. L. Hall,et al.  Incoherent neutron scattering function for molecular diffusion in lamellar systems , 1978 .