Molecular tectonics in biomineralization and biomimetic materials chemistry

The systematic fabrication of advanced materials will require the construction of architectures over scales ranging from the molecular to the macroscopic. The basic constructional processes of biomineralization—supramolecular pre-organization, interfacial molecular recognition (templating) and cellular processing—can provide useful archetypes for molecular-scale building, or ‘molecular tectonics’, in inorganic materials chemistry.

[1]  J. Fendler,et al.  Epitaxial formation of lead sulfide crystals under arachidic acid monolayers , 1992 .

[2]  S. Mann,et al.  Biomineralization: Biomimetic Potential at the Inorganic-Organic Interface , 1992 .

[3]  P. C. Rieke,et al.  Innovative materials processing strategies: a biomimetic approach. , 1992, Science.

[4]  Stephen Mann,et al.  Crystal assembly and phylogenetic evolution in heterococcoliths , 1992, Nature.

[5]  J. Nagy,et al.  Preparation, characterization and catalytic activity of monodisperse colloidal metal borides , 1989 .

[6]  Dominique Faure,et al.  Formation and structure of carbonate particles in reverse microemulsions , 1991 .

[7]  M. Steigerwald,et al.  Biosynthesis of cadmium sulphide quantum semiconductor crystallites , 1989, Nature.

[8]  Jean-Marie Lehn,et al.  Perspectives in Supramolecular Chemistry—From Molecular Recognition towards Molecular Information Processing and Self‐Organization , 1990 .

[9]  P. Calvert,et al.  Synthetic and biological composites formed byin situ precipitation , 1988 .

[10]  Kevin Kendall,et al.  The relation between porosity, microstructure and strength, and the approach to advanced cement-based materials , 1983, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[11]  P. Ajayan,et al.  Capillarity-induced filling of carbon nanotubes , 1993, Nature.

[12]  M. Stillman,et al.  Mercury binding to metallothioneins: formation of the Hg18-MT species , 1993 .

[13]  N. L. Thomas,et al.  On the architecture and function of cuttlefish bone , 1983 .

[14]  David J. Williams,et al.  A [2] Catenane Made to Order , 1989 .

[15]  K. Kurihara,et al.  Photosensitized charge separation and hydrogen production in reversed micelle entrapped platinized colloidal cadmium sulphide , 1984 .

[16]  Paul Calvert,et al.  Materials synthesis utilizing biological processes , 1990 .

[17]  Xiaogang Peng,et al.  Preparation and structure of Q-state lead sulfide monolayers in metastable stearic acid Langmuir-Blodgett films , 1992 .

[18]  S. Mann,et al.  Magnetoferritin: in vitro synthesis of a novel magnetic protein. , 1992, Science.

[19]  S. Mann,et al.  Precipitation within unilamellar vesicles. Part 1. Studies of silver(I) oxide formation , 1983 .

[20]  P. Harrison,et al.  Influence of site-directed modifications on the formation of iron cores in ferritin. , 1991, Journal of molecular biology.

[21]  Y. Teraoka,et al.  Production and growth of size-quantized cadmium sulphide in the hydrophilic interlayer of Langmuir–Blodgett films , 1991 .

[22]  Ying Wang,et al.  Synthesis and Characterization of Surface-Capped, Size-Quantized CdS Clusters. Chemical Control of Cluster Size , 1990 .

[23]  Thomas E. Mallouk,et al.  Formation of quantum-size semiconductor particles in a layered metal phosphonate host lattice , 1991 .

[24]  Paul Tempst,et al.  SNAP receptors implicated in vesicle targeting and fusion , 1993, Nature.

[25]  T. Kunitake,et al.  Formation of Oriented Iron Oxide Particles in Cast Multibilayer Films , 1990 .

[26]  G. Stucky,et al.  Synthesis and characterization of group III-V semiconductor clusters: gallium phosphide GaP in zeolite Y , 1989 .

[27]  E. Landau,et al.  Langmuir Monolayers Designed for the Oriented Growth of Glycine and Sodium Chloride Crystals at Air/Water Interfaces , 1986 .

[28]  K. Hagen Synthetic Models for Iron–Oxygen Aggregation and Biomineralization , 1992 .

[29]  S. Weiner,et al.  A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: Relevance to biomineralization. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[30]  L. Davis The structure of dihydroxyacetone in solution , 1973 .

[31]  Stephen Mann,et al.  Crystal recognition at inorganic–organic interfaces: Nucleation and growth of oriented BaSO4 under Compressed Langmuir Monolayers , 1992 .

[32]  L. Motte,et al.  Synthesis of cadmium sulfide in situ in cadmium bis(2-ethylhexyl) sulfosuccinate reverse micelle: polydispersity and photochemical reaction , 1992 .

[33]  K. Kandori,et al.  Preparation and characterization of monodisperse magnetite sols in microemulsion , 1983 .

[34]  P. C. Rieke,et al.  Materials synthesis based on biological processes , 1991 .

[35]  Bo Xu,et al.  FORMATION OF SILVER IONIC CLUSTERS AND SILVER METAL PARTICLES IN ZEOLITE RHO STUDIED BY ELECTRON SPIN RESONANCE AND FAR-INFRARED SPECTROSCOPIES , 1991 .

[36]  N. Clark,et al.  Biomolecular/solid‐state nanoheterostructures , 1990 .

[37]  Paul Yager,et al.  Lipid-based tubule microstructures☆ , 1987 .

[38]  Emmanuel P. Giannelis,et al.  A new strategy for synthesizing polymer-ceramic nanocomposites , 1992 .

[39]  Stephen Mann,et al.  Controlled crystallization of CaCO3 under stearic acid monolayers , 1988, Nature.

[40]  P. Calvert Biomimetic Ceramics and Composites , 1992 .

[41]  S. Komarneni,et al.  Controlled crystallization of vaterite from viscous solutions of organic colloids , 1990 .

[42]  S. Mann Mineralization in biological systems , 1983 .

[43]  A. P. Wheeler,et al.  Inhibition of Calcium Carbonate and Phosphate Crystallization by Peptides Enriched in Aspartic Acid and Phosphoserine , 1991 .

[44]  P. Yager,et al.  Formation of mineral microstructures with a high aspect ratio from phospholipid bilayer tubules , 1992 .

[45]  A. Bose,et al.  Synthesis of submicrometer crystals of aluminum oxide by aqueous intravesicular precipitation , 1990 .

[46]  S. Lippard,et al.  A mixed-valent polyiron oxo complex that models the biomineralization of the ferritin core. , 1993, Science.

[47]  Lindsay Sawyer,et al.  Caseins as rheomorphic proteins: interpretation of primary and secondary structures of the αS1-, β- and κ-caseins , 1993 .

[48]  H. Krautscheid,et al.  New Copper Clusters Containing Se and PEt3 as Ligands: [Cu70Se35(PEt3)22] and [Cu20Se13(PEt3)12] , 1990 .

[49]  G. Ozin Nanochemistry: Synthesis in diminishing dimensions , 1992 .

[50]  S. Komarneni,et al.  Intercalation of copper metal clusters in montmorillonite , 1991, Nature.

[51]  V. Mehrotra,et al.  Matrix-Mediated Synthesis of Nanocrystalline γ-Fe2O3: A New Optically Transparent Magnetic Material , 1992, Science.

[52]  R. J. Williams,et al.  Biomineralization: Chemical and Biochemical Perspectives , 1989 .

[53]  Stephen Mann,et al.  Synthesis of inorganic nanophase materials in supramolecular protein cages , 1991, Nature.

[54]  E. Dalas Crystallization of sparingly soluble salts on functionalized polymers , 1991 .

[55]  T. Koetzle,et al.  Biological Control of Crystal Texture: A Widespread Strategy for Adapting Crystal Properties to Function , 1993, Science.

[56]  Rodney S. Ruoff,et al.  Single Crystal Metals Encapsulated in Carbon Nanoparticles , 1993, Science.

[57]  S. Mann,et al.  Oriented crystallization of CaCo3 under compressed monolayers. Part 2.—Morphology, structure and growth of immature crystals , 1991 .

[58]  S. Mann,et al.  Template mineralization of self-assembled anisotropic lipid microstructures , 1993, Nature.

[59]  S. Mann,et al.  Crystallization at Inorganic-organic Interfaces: Biominerals and Biomimetic Synthesis , 1993, Science.

[60]  P. Bianconi,et al.  Crystallization of an inorganic phase controlled by a polymer matrix , 1991, Nature.

[61]  J. S. Beck,et al.  Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism , 1992, Nature.

[62]  N. Mendelson,et al.  Production and initial characterization of bionites: materials formed on a bacterial backbone. , 1992, Science.

[63]  D. Macey,et al.  Characterization and Structural Organization of the Organic Matrix of the Radula Teeth of the Chiton Acanthopleura hirtosa , 1990 .

[64]  K. Merzweiler,et al.  New Transition Metal Clusters with Ligands from Main Groups Five and Six , 1988 .

[65]  M. Manassero,et al.  Synthesis and Structure of the [Ni38Pt6(CO)48H6−n]n− (n=5, 4) Ions: Ni‐Pt Clusters as Models for “Cherry” Crystallites , 1985 .

[66]  Stephen Mann,et al.  Molecular recognition in biomineralization , 1988, Nature.

[67]  R. Lakes Materials with structural hierarchy , 1993, Nature.

[68]  D. Williams,et al.  The Biological Chemistry of the Elements , 1991 .

[69]  S. Weiner,et al.  Control and Design Principles in Biological Mineralization , 1992 .

[70]  J. K. Thomas,et al.  Effect of interlayer spacing on intercalation of CdS in clays , 1989 .

[71]  C. Perry,et al.  Cell Wall Biosynthesis during Silicification of Grass Hairs , 1987 .

[72]  John D. Currey,et al.  The Mechanical Adaptations of Bones , 1984 .

[73]  A. Alivisatos,et al.  Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers , 1992 .

[74]  S. Weiner,et al.  Organization of extracellularly mineralized tissues: a comparative study of biological crystal growth. , 1986, CRC critical reviews in biochemistry.

[75]  Mark E. Davis Organizing for better synthesis , 1993, Nature.

[76]  S. Weiner,et al.  Interactions of sea-urchin skeleton macromolecules with growing calcite crystals— a study of intracrystalline proteins , 1988, Nature.

[77]  J. Fendler,et al.  Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed CdS and ZnS semiconductor particles. Preparation and utilization for photosensitized charge separation and hydrogen generation , 1988 .

[78]  Banding structures in induced morphology crystal aggregates of CaCO3 , 1987 .

[79]  R. J. Williams,et al.  Phospholipid vesicles as a model system for biomineralization , 1986, Nature.