Mechanical transmission at spine synapses: Short-term potentiation and working memory

[1]  T. Komiyama,et al.  Learning binds new inputs into functional synaptic clusters via spinogenesis , 2022, Nature Neuroscience.

[2]  N. Inagaki,et al.  Mechanical regulation of synapse formation and plasticity. , 2022, Seminars in cell & developmental biology.

[3]  Jia-Jia Liu,et al.  Structural LTP: Signal transduction, actin cytoskeleton reorganization, and membrane remodeling of dendritic spines , 2022, Current Opinion in Neurobiology.

[4]  Grant F Kusick,et al.  Transient docking of synaptic vesicles: Implications and mechanisms , 2022, Current Opinion in Neurobiology.

[5]  M. Dalva,et al.  Nanoscale rules governing the organization of glutamate receptors in spine synapses are subunit specific , 2022, Nature communications.

[6]  Sho Yagishita,et al.  Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis , 2021, Nature.

[7]  M. Murayama,et al.  Stepwise synaptic plasticity events drive the early phase of memory consolidation , 2021, Science.

[8]  R. Yuste,et al.  Voltage compartmentalization in dendritic spines in vivo , 2021, Science.

[9]  R. Yasuda,et al.  Rapid Ultrastructural Changes in the PSD and Surrounding Membrane after Induction of Structural LTP in Single Dendritic Spines , 2021, The Journal of Neuroscience.

[10]  R. Nicoll,et al.  AMPA receptor trafficking and LTP: Carboxy-termini, amino-termini and TARPs , 2021, Neuropharmacology.

[11]  Yiyun Huang,et al.  In vivo evidence of lower synaptic vesicle density in schizophrenia , 2021, Molecular Psychiatry.

[12]  T. Toyoizumi,et al.  Spine dynamics in the brain, mental disorders and artificial neural networks , 2021, Nature Reviews Neuroscience.

[13]  Kazuki Obashi,et al.  The role of molecular diffusion within dendritic spines in synaptic function , 2021, The Journal of general physiology.

[14]  J. Nabekura,et al.  Photoactivatable CaMKII induces synaptic plasticity in single synapses , 2021, Nature Communications.

[15]  Kevan A. C. Martin,et al.  Structure and function of a neocortical synapse , 2019, Nature.

[16]  T. Oertner,et al.  Endoplasmic reticulum visits highly active spines and prevents runaway potentiation of synapses , 2020, Nature Communications.

[17]  Grant F Kusick,et al.  Synaptic vesicles transiently dock to refill release sites , 2018, Nature Neuroscience.

[18]  Anders Lansner,et al.  An Indexing Theory for Working Memory Based on Fast Hebbian Plasticity , 2018, eNeuro.

[19]  David M. Miller,et al.  C. elegans neurons have functional dendritic spines , 2019, eLife.

[20]  Sho Yagishita,et al.  Bidirectional in vivo structural dendritic spine plasticity revealed by two-photon glutamate uncaging in the mouse neocortex , 2019, Scientific Reports.

[21]  C. Heisenberg,et al.  Mechanochemical Feedback Loops in Development and Disease , 2019, Cell.

[22]  R. Yasuda,et al.  Reciprocal Activation within a Kinase-Effector Complex Underlying Persistence of Structural LTP , 2019, Neuron.

[23]  Kazuki Obashi,et al.  Precise Temporal Regulation of Molecular Diffusion within Dendritic Spines by Actin Polymers during Structural Plasticity. , 2019, Cell reports.

[24]  D. Kilinc The Emerging Role of Mechanics in Synapse Formation and Plasticity , 2018, Front. Cell. Neurosci..

[25]  Peijiang Yuan,et al.  An Excitatory Neural Assembly Encodes Short-Term Memory in the Prefrontal Cortex. , 2018, Cell reports.

[26]  Mark T. Harnett,et al.  Dendritic Spines Prevent Synaptic Voltage Clamp , 2018, Neuron.

[27]  J. Lisman,et al.  Memory Erasure Experiments Indicate a Critical Role of CaMKII in Memory Storage , 2017, Neuron.

[28]  T. Vogels,et al.  Synaptic Transmission Optimization Predicts Expression Loci of Long-Term Plasticity , 2017, Neuron.

[29]  Katie C. Bittner,et al.  Behavioral time scale synaptic plasticity underlies CA1 place fields , 2017, Science.

[30]  Y. Humeau,et al.  Hippocampal LTP and contextual learning require surface diffusion of AMPA receptors , 2017, Nature.

[31]  R. Sprengel,et al.  Different Forms of AMPA Receptor Mediated LTP and Their Correlation to the Spatial Working Memory Formation , 2017, Front. Mol. Neurosci..

[32]  A. Hayashi‐Takagi,et al.  Synapse pathology and translational applications for schizophrenia , 2017, Neuroscience Research.

[33]  Mikhail Katkov,et al.  Synaptic Correlates of Working Memory Capacity , 2017, Neuron.

[34]  R. Nicoll A Brief History of Long-Term Potentiation , 2017, Neuron.

[35]  Barry Setlow,et al.  NR2A-Containing NMDARs in the Prefrontal Cortex Are Required for Working Memory and Associated with Age-Related Cognitive Decline , 2016, The Journal of Neuroscience.

[36]  P. Seeburg,et al.  Hippocampal GluA1 expression in Gria1 −/− mice only partially restores spatial memory performance deficits , 2016, Neurobiology of Learning and Memory.

[37]  J. McNamara,et al.  Rho GTPase complementation underlies BDNF-dependent homo- and heterosynaptic plasticity , 2016, Nature.

[38]  R. Nicoll,et al.  Long-Term Potentiation: From CaMKII to AMPA Receptor Trafficking. , 2016, Annual review of physiology.

[39]  Sho Yagishita,et al.  Two-photon fluorescence lifetime imaging of primed SNARE complexes in presynaptic terminals and β cells , 2015, Nature Communications.

[40]  G. Collingridge,et al.  Long-term potentiation and the role of N-methyl-d-aspartate receptors , 2015, Brain Research.

[41]  R. Mishra,et al.  Role of presynaptic phosphoprotein synapsin II in schizophrenia. , 2015, World journal of psychiatry.

[42]  M. Stokes ‘Activity-silent’ working memory in prefrontal cortex: a dynamic coding framework , 2015, Trends in Cognitive Sciences.

[43]  E. Schuman,et al.  Direct visualization of newly synthesized target proteins in situ , 2015, Nature Methods.

[44]  Da-Ting Lin,et al.  Visualization of NMDA receptor-dependent AMPA receptor synaptic plasticity in vivo , 2015, Nature Neuroscience.

[45]  Daniel Choquet,et al.  Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion , 2014, The EMBO journal.

[46]  Sho Yagishita,et al.  A critical time window for dopamine actions on the structural plasticity of dendritic spines , 2014, Science.

[47]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[48]  Tobias Bonhoeffer,et al.  Balance and Stability of Synaptic Structures during Synaptic Plasticity , 2014, Neuron.

[49]  Mriganka Sur,et al.  Structural and Molecular Remodeling of Dendritic Spine Substructures during Long-Term Potentiation , 2014, Neuron.

[50]  U. Nägerl,et al.  Spine neck plasticity regulates compartmentalization of synapses , 2014, Nature Neuroscience.

[51]  Kartik K. Sreenivasan,et al.  Revisiting the role of persistent neural activity during working memory , 2014, Trends in Cognitive Sciences.

[52]  N. Emptage,et al.  Two sides to long-term potentiation: a view towards reconciliation , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[53]  Jun Noguchi,et al.  GABA promotes the competitive selection of dendritic spines by controlling local Ca2+ signaling , 2013, Nature Neuroscience.

[54]  R. Weinberg,et al.  Disruption of Arp2/3 Results in Asymmetric Structural Plasticity of Dendritic Spines and Progressive Synaptic and Behavioral Abnormalities , 2013, The Journal of Neuroscience.

[55]  H. Kasai,et al.  Distinct initial SNARE configurations underlying the diversity of exocytosis. , 2012, Physiological reviews.

[56]  T. Neubert,et al.  RNA Binding Proteins Accumulate at the Postsynaptic Density with Synaptic Activity , 2012, The Journal of Neuroscience.

[57]  G. Ellis‐Davies,et al.  In vivo two‐photon uncaging of glutamate revealing the structure–function relationships of dendritic spines in the neocortex of adult mice , 2011, The Journal of physiology.

[58]  Ryohei Yasuda,et al.  Local, persistent activation of Rho GTPases during plasticity of single dendritic spines , 2011, Nature.

[59]  John Lisman,et al.  A Single Brief Burst Induces GluR1-dependent Associative Short-term Potentiation: A Potential Mechanism for Short-term Memory , 2010, Journal of Cognitive Neuroscience.

[60]  Hari Shroff,et al.  Single-Molecule Discrimination of Discrete Perisynaptic and Distributed Sites of Actin Filament Assembly within Dendritic Spines , 2010, Neuron.

[61]  Jun Noguchi,et al.  Structural dynamics of dendritic spines in memory and cognition , 2010, Trends in Neurosciences.

[62]  T. Svitkina,et al.  Molecular Architecture of Synaptic Actin Cytoskeleton in Hippocampal Neurons Reveals a Mechanism of Dendritic Spine Morphogenesis , 2010, Molecular biology of the cell.

[63]  D. Bannerman Fractionating spatial memory with glutamate receptor subunit-knockout mice. , 2009, Biochemical Society transactions.

[64]  N. Ziv,et al.  Long-Term Relationships between Synaptic Tenacity, Synaptic Remodeling, and Network Activity , 2009, PLoS biology.

[65]  Seok-Jin R. Lee,et al.  Activation of CaMKII in single dendritic spines during long-term potentiation , 2009, Nature.

[66]  Ole Paulsen,et al.  Induction and expression of GluA1 (GluR-A)-independent LTP in the hippocampus , 2009, The European journal of neuroscience.

[67]  Karel Svoboda,et al.  Rapid Functional Maturation of Nascent Dendritic Spines , 2009, Neuron.

[68]  H. Kasai,et al.  Principles of Long-Term Dynamics of Dendritic Spines , 2008, The Journal of Neuroscience.

[69]  Marc W Howard,et al.  A context-based theory of recency and contiguity in free recall. , 2008, Psychological review.

[70]  Thomas G. Oertner,et al.  Optical induction of plasticity at single synapses reveals input-specific accumulation of αCaMKII , 2008, Proceedings of the National Academy of Sciences.

[71]  Karel Svoboda,et al.  The Spread of Ras Activity Triggered by Activation of a Single Dendritic Spine , 2008, Science.

[72]  David J. Sanderson,et al.  NMDA Receptor Subunit NR2A Is Required for Rapidly Acquired Spatial Working Memory But Not Incremental Spatial Reference Memory , 2008, The Journal of Neuroscience.

[73]  Haruo Kasai,et al.  Protein Synthesis and Neurotrophin-Dependent Structural Plasticity of Single Dendritic Spines , 2008, Science.

[74]  M. Tsodyks,et al.  Synaptic Theory of Working Memory , 2008, Science.

[75]  Jun Noguchi,et al.  The Subspine Organization of Actin Fibers Regulates the Structure and Plasticity of Dendritic Spines , 2008, Neuron.

[76]  Karel Svoboda,et al.  Locally dynamic synaptic learning rules in pyramidal neuron dendrites , 2007, Nature.

[77]  G. Collingridge,et al.  Presynaptic mechanisms involved in the expression of STP and LTP at CA1 synapses in the hippocampus , 2007, Neuropharmacology.

[78]  Y. Okada Ion channels and transporters involved in cell volume regulation and sensor mechanisms , 2007, Cell Biochemistry and Biophysics.

[79]  R. Huganir,et al.  Synapse-specific regulation of AMPA receptor function by PSD-95 , 2006, Proceedings of the National Academy of Sciences.

[80]  E. Andrianantoandro,et al.  Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. , 2006, Molecular cell.

[81]  Reinhard Jahn,et al.  SNAREs — engines for membrane fusion , 2006, Nature Reviews Molecular Cell Biology.

[82]  Garry D. Honey,et al.  Schizophrenia, ketamine and cannabis: evidence of overlapping memory deficits , 2006, Trends in Cognitive Sciences.

[83]  Thomas K. Berger,et al.  Heterogeneity in the pyramidal network of the medial prefrontal cortex , 2006, Nature Neuroscience.

[84]  Roberto Malinow,et al.  Glutamate Receptor Exocytosis and Spine Enlargement during Chemically Induced Long-Term Potentiation , 2006, The Journal of Neuroscience.

[85]  Charan Ranganath,et al.  Opinion TRENDS in Cognitive Sciences Vol.9 No.8 August 2005 Doubts about double dissociations between short- and long-term memory , 2022 .

[86]  Jun Noguchi,et al.  Spine-Neck Geometry Determines NMDA Receptor-Dependent Ca2+ Signaling in Dendrites , 2005, Neuron.

[87]  Takeharu Nagai,et al.  Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity , 2004, Nature Neuroscience.

[88]  G. Ellis‐Davies,et al.  Structural basis of long-term potentiation in single dendritic spines , 2004, Nature.

[89]  Rafael Yuste,et al.  Calcium Microdomains in Aspiny Dendrites , 2003, Neuron.

[90]  T. Bliss,et al.  Optical Quantal Analysis Reveals a Presynaptic Component of LTP at Hippocampal Schaffer-Associational Synapses , 2003, Neuron.

[91]  George Oster,et al.  Force generation by actin polymerization II: the elastic ratchet and tethered filaments. , 2003, Biophysical journal.

[92]  Thomas D Pollard,et al.  Cellular Motility Driven by Assembly and Disassembly of Actin Filaments , 2003, Cell.

[93]  P. H. Seeburg,et al.  Spatial memory dissociations in mice lacking GluR1 , 2002, Nature Neuroscience.

[94]  B. Sakmann,et al.  Molecular dissection of hippocampal theta-burst pairing potentiation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[95]  E. Miller,et al.  Timecourse of object‐related neural activity in the primate prefrontal cortex during a short‐term memory task , 2002, The European journal of neuroscience.

[96]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[97]  Yasushi Miyashita,et al.  Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons , 2001, Nature Neuroscience.

[98]  Steven A. Siegelbaum,et al.  Visualization of changes in presynaptic function during long-term synaptic plasticity , 2001, Nature Neuroscience.

[99]  G. Augustine How does calcium trigger neurotransmitter release? , 2001, Current Opinion in Neurobiology.

[100]  A. Baddeley The episodic buffer: a new component of working memory? , 2000, Trends in Cognitive Sciences.

[101]  A. Matus,et al.  Actin-based plasticity in dendritic spines. , 2000, Science.

[102]  M. Fischer,et al.  Glutamate receptors regulate actin-based plasticity in dendritic spines , 2000, Nature Neuroscience.

[103]  P. Forscher,et al.  Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. , 2000, Journal of neurobiology.

[104]  J. Sanes,et al.  Can molecules explain long-term potentiation? , 1999, Nature Neuroscience.

[105]  Petter Laake,et al.  Different modes of expression of AMPA and NMDA receptors in hippocampal synapses , 1999, Nature Neuroscience.

[106]  J. Lübke,et al.  Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. , 1999, Science.

[107]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[108]  P. Schulz,et al.  Differing mechanisms of expression for short- and long-term potentiation. , 1997, Journal of neurophysiology.

[109]  Dimitri M Kullmann,et al.  LTP of AMPA and NMDA Receptor–Mediated Signals: Evidence for Presynaptic Expression and Extrasynaptic Glutamate Spill-Over , 1996, Neuron.

[110]  P. Goldman-Rakic Cellular basis of working memory , 1995, Neuron.

[111]  B. Gustafsson,et al.  Onset and stabilization of NMDA receptor-dependent hippocampal long-term potentiation , 1994, Neuroscience Research.

[112]  C S Peskin,et al.  Cellular motions and thermal fluctuations: the Brownian ratchet. , 1993, Biophysical journal.

[113]  D. Madison,et al.  A requirement for the intercellular messenger nitric oxide in long-term potentiation. , 1991, Science.

[114]  E. Kandel,et al.  Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors , 1991, Nature.

[115]  Robert C. Malenka,et al.  Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus , 1991, Neuron.

[116]  R. Nicoll,et al.  An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation , 1989, Nature.

[117]  Graham L. Collingridge,et al.  Temporally distinct pre- and post-synaptic mechanisms maintain long-term potentiation , 1989, Nature.

[118]  Y. Miyashita Neuronal correlate of visual associative long-term memory in the primate temporal cortex , 1988, Nature.

[119]  R. Nicoll,et al.  NMDA application potentiates synaptic transmission in the hippocampus , 1988, Nature.

[120]  Y. Miyashita,et al.  Neuronal correlate of pictorial short-term memory in the primate temporal cortexYasushi Miyashita , 1988, Nature.

[121]  P. Somogyi,et al.  Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat , 1983, Neuroscience.

[122]  R. Racine,et al.  Short-term potentiation phenomena in the rat limbic forebrain , 1983, Brain Research.

[123]  F. Crick Do dendritic spines twitch? , 1982, Trends in Neurosciences.

[124]  A. Matus,et al.  High actin concentrations in brain dendritic spines and postsynaptic densities. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[125]  T. Bliss,et al.  Long-term potentiation of the perforant path in vivo is associated with increased glutamate release , 1982, Nature.

[126]  B L McNaughton,et al.  Long‐term synaptic enhancement and short‐term potentiation in rat fascia dentata act through different mechanisms , 1982, The Journal of physiology.

[127]  M. Iino,et al.  Tension responses of chemically skinned fibre bundles of the guinea‐pig taenia caeci under varied ionic environments , 1981, The Journal of physiology.