The lens eyes of the box jellyfish Tripedalia cystophora and Chiropsalmus sp. are slow and color-blind

Box jellyfish, or cubomedusae, possess an impressive total of 24 eyes of four morphologically different types. Compared to other cnidarians they also have an elaborate behavioral repertoire, which for a large part seems to be visually guided. Two of the four types of cubomedusean eyes, called the upper and the lower lens eye, are camera type eyes with spherical fish-like lenses. Here we explore the electroretinograms of the lens eyes of the Caribbean species, Tripedalia cystophora, and the Australian species, Chiropsalmus sp. using suction electrodes. We show that the photoreceptors of the lens eyes of both species have dynamic ranges of about 3 log units and slow responses. The spectral sensitivity curves for all eyes peak in the blue-green region, but the lower lens eye of T. cystophora has a small additional peak in the near UV range. All spectral sensitivity curves agree well with the theoretical absorbance curve of a single opsin, strongly suggesting color-blind vision in box jellyfish with a single receptor type. A single opsin is supported by selective adaptation experiments.

[1]  V. Martin,et al.  Photoreceptors of cnidarians , 2002 .

[2]  V. Maximov,et al.  Environmental factors which may have led to the appearance of colour vision. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[3]  C. L. Singla,et al.  Fine structure of the ocellus of Sarsia tubulosa (Hydrozoa, Anthomedusae) , 1982, Zoomorphology.

[4]  Eric J Warrant,et al.  Vision in the deep sea , 2004, Biological reviews of the Cambridge Philosophical Society.

[5]  D. Nilsson,et al.  Rhopalia are integrated parts of the central nervous system in box jellyfish , 2006, Cell and Tissue Research.

[6]  Masao Yoshida,et al.  Fine structure of complex ocelli of a cubomedusan, Tamoya bursaria Haeckel , 1976, Cell and Tissue Research.

[7]  J. Pearse,et al.  Vision of cubomedusan jellyfishes. , 1978, Science.

[8]  Peter Ekström,et al.  The bilaterally symmetric rhopalial nervous system of box jellyfish , 2006 .

[9]  Michael F. Land,et al.  Optics and Vision in Invertebrates , 1981 .

[10]  K. Donner,et al.  In search of the visual pigment template , 2000, Visual Neuroscience.

[11]  C Weber,et al.  Electrical activities of a type of electroretinogram recorded from the ocellus of a jellyfish, Polyorchis penicillatus (Hydromedusae). , 1982, The Journal of experimental zoology.

[12]  Vicki J. Martin Photoreceptors of cubozoan jellyfish , 2004 .

[13]  D. Nilsson,et al.  Bilaterally symmetrical rhopalial nervous system of the box jellyfish Tripedalia cystophora , 2006, Journal of morphology.

[14]  T. Long,et al.  Courtship and reproduction in Carybdea sivickisi (Cnidaria: Cubozoa) , 2005 .

[15]  O. Hertwig,et al.  Das Nervensystem und die Sinnesorgane der Medusen , 1878 .

[16]  G. Woodward,et al.  Kinematic analysis of swimming in Australian box jellyfish, Chiropsalmus sp. and Chironex fleckeri (Cubozoa, Cnidaria: Chirodropidae) , 2005 .

[17]  Masao Yoshida,et al.  ELECTRON MICROSCOPY ON THE PHOTORECEPTORS OF AN ANTHOMEDUSA AND A SCYPHOMEDUSA , 1973 .

[18]  V. Martin,et al.  Photoreceptors of cubozoan jellyfish , 2004, Hydrobiologia.

[19]  Eric J. Warrant,et al.  Nocturnal Vision and Landmark Orientation in a Tropical Halictid Bee , 2004, Current Biology.

[20]  A. Dubs,et al.  The dynamics of phototransduction in insects , 1984, Journal of Comparative Physiology A.

[21]  J. Seymour,et al.  Growth and age determination of the tropical Australian cubozoan Chiropsalmus sp. , 2004, Hydrobiologia.

[22]  S. Laughlin Neural Principles in the Peripheral Visual Systems of Invertebrates , 1981 .

[23]  Edward J. Buskey,et al.  Behavioral adaptations of the cubozoan medusa Tripedalia cystophora for feeding on copepod (Dioithona oculata) swarms , 2003 .

[24]  P. Hamner,et al.  Swimming, feeding, circulation and vision in the Australian box jellyfish, Chironex fleckeri (Cnidaria: Cubozoa) , 1995 .

[25]  G. Hoyle Simple Nervous Systems , 1976 .

[26]  Christian H. Weber,et al.  Electrical activity in response to light of the ocellus of the hydromedusan , 1982 .

[27]  M. Coates,et al.  Visual Ecology and Functional Morphology of Cubozoa (Cnidaria)1 , 2003, Integrative and comparative biology.

[28]  M. Yoshida,et al.  Fine structure of ocelli of an anthomedusan, Nemopsis dofleini, with special reference to synaptic organization , 1980, Zoomorphology.

[29]  Lars Gislén,et al.  Advanced optics in a jellyfish eye , 2005, Nature.

[30]  Y. Toh,et al.  Fine structure of the ocellus of the hydromedusan, Spirocodon saltatrix. I. Receptor cells. , 1979, Journal of Ultrastructure Research.

[31]  T. Cronin,et al.  Spectral sensitivity in a sponge larva , 2002, Journal of Comparative Physiology A.

[32]  C. L. Singla Ocelli of hydromedusae , 1974, Cell and Tissue Research.

[33]  Scott E. Stewart,et al.  Field behavior of tripedalia cystophora (class cubozoa) , 1996 .

[34]  G. Matsumoto Observations on the anatomy and behavior of the cubozoan Carybdea rastonni Haacke , 1995 .

[35]  Masao Yoshida,et al.  Freeze-fracture and histofluorescence studies on photoreceptive membranes of medusan ocelli , 1984 .

[36]  Edward W. Berger,et al.  The histological structure of the eyes of Cubomedusæ , 1898 .

[37]  Dan-Eric Nilsson,et al.  The spectral sensitivity of the lens eyes of a box jellyfish, Tripedalia cystophora (Conant) , 2006, Journal of Experimental Biology.

[38]  G. Mackie Central Neural Circuitry in the Jellyfish Aglantha , 2004, Neurosignals.