Response of Tisochrysis lutea [Prymnesiophycidae] to aeration conditions in a bench-scale photobioreactor

[1]  J. Montañez,et al.  Effects of shear rate, photoautotrophy and photoheterotrophy on production of biomass and pigments by Chlorella vulgaris , 2017 .

[2]  William B. Zimmerman,et al.  Aerator Design for Microbubble Generation , 2017 .

[3]  W. Zimmerman,et al.  Airlift bioreactor for biological applications with microbubble mediated transport processes , 2015 .

[4]  G. Zeng,et al.  A novel algal biofilm membrane photobioreactor for attached microalgae growth and nutrients removal from secondary effluent. , 2015, Bioresource technology.

[5]  C. Vargas,et al.  On the description of Tisochrysis lutea gen. nov. sp. nov. and Isochrysis nuda sp. nov. in the Isochrysidales, and the transfer of Dicrateria to the Prymnesiales (Haptophyta) , 2013, Journal of Applied Phycology.

[6]  Y. Chisti,et al.  Shear‐induced changes in membrane fluidity during culture of a fragile dinoflagellate microalga , 2012, Biotechnology progress.

[7]  Jean-Paul Cadoret,et al.  Optimizing conditions for the continuous culture of Isochrysis affinis galbana relevant to commercial hatcheries , 2012 .

[8]  Ayhan Demirbas,et al.  Use of algae as biofuel sources. , 2010 .

[9]  C. Ugwu,et al.  Photobioreactors for mass cultivation of algae. , 2008, Bioresource technology.

[10]  M. Timmons,et al.  Using Oxygen Gas Transfer Coefficients to Predict Carbon Dioxide Removal , 2007 .

[11]  H. Silva,et al.  Effect of hydrodynamic stress on dunaliella growth , 2007 .

[12]  E. Molina Grima,et al.  Gas‐liquid transfer of atmospheric CO2 in microalgal cultures , 2007 .

[13]  Y. Chisti,et al.  Shear rate in stirred tank and bubble column bioreactors , 2006 .

[14]  J. Vega-Estrada,et al.  Haematococcus pluvialis cultivation in split-cylinder internal-loop airlift photobioreactor under aeration conditions avoiding cell damage , 2005, Applied Microbiology and Biotechnology.

[15]  Yusuf Chisti,et al.  Mixing in Bubble Column and Airlift Reactors , 2004 .

[16]  Hadiyanto,et al.  Overcoming shear stress of microalgae cultures in sparged photobioreactors , 2004, Biotechnology and bioengineering.

[17]  Yusuf Chisti,et al.  Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors. , 2003 .

[18]  Maria J Barbosa,et al.  Hydrodynamic stress and lethal events in sparged microalgae cultures. , 2003, Biotechnology and bioengineering.

[19]  Janusz S. Laskowski,et al.  Bubble coalescence and its effect on dynamic foam stability , 2002 .

[20]  J. Ogbonna,et al.  Improvement of mass transfer characteristics and productivities of inclined tubular photobioreactors by installation of internal static mixers , 2002, Applied Microbiology and Biotechnology.

[21]  Yusuf Chisti,et al.  Carboxymethyl cellulose protects algal cells against hydrodynamic stress , 2001 .

[22]  Liang-ping Lin,et al.  Ultrastructural study and lipid formation of Isochrysis sp. CCMP1324 , 2001 .

[23]  Y. Chisti,et al.  Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance , 2001 .

[24]  A. Margaritis,et al.  Hydrodynamic and Mass Transfer Characteristics of Three-Phase Gaslift Bioreactor Systems , 2001, Critical reviews in biotechnology.

[25]  Y. Chisti,et al.  Scale-up of tubular photobioreactors , 2000, Journal of Applied Phycology.

[26]  Y. Chisti,et al.  Animal-cell damage in sparged bioreactors. , 2000, Trends in biotechnology.

[27]  E. Grima,et al.  Effects of mechanical and hydrodynamic stress in agitated, sparged cultures of Porphyridium cruentum , 2000 .

[28]  H Guterman,et al.  A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs , 2000, Biotechnology and bioengineering.

[29]  Jose C. Merchuk,et al.  Influence of sparger on energy dissipation, shear rate, and mass transfer to sea water in a concentric-tube airlift bioreactor , 1999 .

[30]  Contreras,et al.  Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth of phaeodactylum tricornutum in a concentric tube airlift photobioreactor , 1998, Biotechnology and bioengineering.

[31]  Emilio Molina,et al.  Studies of mixing in a concentric tube airlift bioreactor with different spargers , 1998 .

[32]  G. C. Zittelli,et al.  Efficiency of sunlight utilization: tubular versus flat photobioreactors , 1998, Biotechnology and bioengineering.

[33]  K. Ohtaguchi,et al.  Gas‐Sparged bioreactors for CO2 fixation by Dunaliella tertiolecta , 1995 .

[34]  J. Asenjo Pneumatically Agitated Bioreactors , 1994 .

[35]  A. Richmond,et al.  Optimizing the population density inIsochrysis galbana grown outdoors in a glass column photobioreactor , 1994, Journal of Applied Phycology.

[36]  G. Wikfors,et al.  Differences in strains of Isochrysis of importance to mariculture , 1994 .

[37]  R. Calabrese,et al.  Unified modeling framework of cell death due to bubbles in agitated and sparged bioreactors. , 1994, Journal of biotechnology.

[38]  P. Talbot,et al.  Absorption of CO2 in algal mass culture systems: A different characterization approach , 1991, Biotechnology and bioengineering.

[39]  Carl H. Gibson,et al.  Effects of small-scale turbulence on microalgae , 1990, Journal of Applied Phycology.

[40]  J. Weissman,et al.  Photobioreactor design: Mixing, carbon utilization, and oxygen accumulation , 1988, Biotechnology and bioengineering.

[41]  M. Moo-Young,et al.  AIRLIFT REACTORS: CHARACTERISTICS, APPLICATIONS AND DESIGN CONSIDERATIONS , 1987 .

[42]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.

[43]  J. Qin,et al.  Improvement of copepod nutritional quality as live food for aquaculture: a review , 2016 .

[44]  Yang Liu,et al.  Effects of bubble–liquid two‐phase turbulent hydrodynamics on cell damage in sparged bioreactor , 2014, Biotechnology progress.

[45]  Thongchai Srinophakun,et al.  Optimal hydrodynamic design of tubular photobioreactors. , 2013 .

[46]  A. Carvalho,et al.  Microalgal Reactors: A Review of Enclosed System Designs and Performances , 2006, Biotechnology progress.

[47]  Yusuf Chisti,et al.  Pneumatically Agitated Bioreactors in Industrial and Environmental Bioprocessing: Hydrodynamics, Hydraulics, and Transport Phenomena , 1998 .

[48]  J. Merchuk,et al.  Shear effects on suspended cells. , 1991, Advances in biochemical engineering/biotechnology.

[49]  Daniel Chaumont,et al.  Cell fragility — The key problem of microalgae mass production in closed photobioreactors , 1991 .

[50]  Z. Cohen,et al.  Optimal growth conditions for Isochrysis galbana , 1986 .

[51]  J. Ewart,et al.  A tropical flagellate food for larval and juvenile oysters, Crassostrea virginica Gmelin , 1981 .

[52]  R. W. Crippen,et al.  The use of neutral red and Evans blue for live-dead determinations of marine plankton (with comments on the use of rotenone for inhibition of grazing). , 1974, Stain technology.