On the Validity of the Pairs Bootstrap for Lasso Estimators
暂无分享,去创建一个
[1] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[2] Peng Zhao,et al. On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..
[3] S. Lahiri,et al. Bootstrapping Lasso Estimators , 2011 .
[4] F. Audrino,et al. Oracle Properties and Finite Sample Inference of the Adaptive Lasso for Time Series Regression Models , 2013, 1312.1473.
[5] C. Geyer. On the Asymptotics of Constrained $M$-Estimation , 1994 .
[6] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[7] Sara van de Geer,et al. Statistics for High-Dimensional Data , 2011 .
[8] Peter Hall,et al. BOOTSTRAP-BASED PENALTY CHOICE FOR THE LASSO , ACHIEVING ORACLE PERFORMANCE , 2009 .
[9] Sara van de Geer,et al. Statistics for High-Dimensional Data: Methods, Theory and Applications , 2011 .
[10] Martin J. Wainwright,et al. Sharp thresholds for high-dimensional and noisy recovery of sparsity , 2006, ArXiv.
[11] Lu Tian,et al. A Perturbation Method for Inference on Regularized Regression Estimates , 2011, Journal of the American Statistical Association.
[12] S. Geer,et al. On asymptotically optimal confidence regions and tests for high-dimensional models , 2013, 1303.0518.
[13] Wenjiang J. Fu,et al. Asymptotics for lasso-type estimators , 2000 .
[14] Holger Dette,et al. Bridge estimators and the adaptive lasso under heteroscedasticity , 2012 .
[15] S. Lahiri,et al. Rates of convergence of the Adaptive LASSO estimators to the Oracle distribution and higher order refinements by the bootstrap , 2013, 1307.1952.
[16] J. Fox. Bootstrapping Regression Models , 2002 .
[17] R. Tibshirani,et al. A SIGNIFICANCE TEST FOR THE LASSO. , 2013, Annals of statistics.
[18] S. N. Lahiri,et al. Asymptotic properties of the residual bootstrap for Lasso estimators , 2010 .
[19] R. Tibshirani,et al. Regression shrinkage and selection via the lasso: a retrospective , 2011 .
[20] Cun-Hui Zhang,et al. Confidence intervals for low dimensional parameters in high dimensional linear models , 2011, 1110.2563.