Influence functions and robust Bayes and empirical Bayes small area estimation

We introduce new robust small area estimation procedures based on area-level models. We first find influence functions corresponding to each individual area-level observation by measuring the divergence between the posterior density functions of regression coefficients with and without that observation. Next, based on these influence functions, properly standardized, we propose some new robust Bayes and empirical Bayes small area estimators. The mean squared errors and estimated mean squared errors of these estimators are also found. A small simulation study compares the performance of the robust and the regular empirical Bayes estimators. When the model variance is larger than the sample variance, the proposed robust empirical Bayes estimators are superior. Copyright 2008, Oxford University Press.

[1]  J. Rao,et al.  On measuring the variability of small area estimators under a basic area level model , 2005 .

[2]  J. Rao Small Area Estimation , 2003 .

[3]  D. Pfeffermann Small Area Estimation‐New Developments and Directions , 2002 .

[4]  A. Zaslavsky,et al.  Downweighting Influential Clusters in Surveys , 2001 .

[5]  P. Lahiri,et al.  A UNIFIED MEASURE OF UNCERTAINTY OF ESTIMATED BEST LINEAR UNBIASED PREDICTORS IN SMALL AREA ESTIMATION PROBLEMS , 2000 .

[6]  P. Lahiri,et al.  Robust hierarchical Bayes estimation of small area characteristics in the presence of covariates and outliers , 1995 .

[7]  Malay Ghosh,et al.  Small Area Estimation: An Appraisal , 1994 .

[8]  L. Rivest,et al.  Outlier Resistant Alternatives to the Ratio Estimator , 1992 .

[9]  J. Rao,et al.  The estimation of the mean squared error of small-area estimators , 1990 .

[10]  N. G. N. Prasad,et al.  The estimation of mean-squared errors of small-area estimators , 1990 .

[11]  Rachel M. Harter,et al.  An Error-Components Model for Prediction of County Crop Areas Using Survey and Satellite Data , 1988 .

[12]  R. Chambers Outlier Robust Finite Population Estimation , 1986 .

[13]  Seymour Geisser,et al.  Estimative influence measures for the multivariate general linear model , 1985 .

[14]  Timothy R. C. Read,et al.  Multinomial goodness-of-fit tests , 1984 .

[15]  C. Radhakrishna Rao,et al.  Statistics and probability : essays in honor of C.R. Rao , 1983 .

[16]  S. Geisser,et al.  A Predictive View of the Detection and Characterization of Influential Observations in Regression Analysis , 1983 .

[17]  S. Amari Differential Geometry of Curved Exponential Families-Curvatures and Information Loss , 1982 .

[18]  R. Fay,et al.  Estimates of Income for Small Places: An Application of James-Stein Procedures to Census Data , 1979 .

[19]  F. Hampel The Influence Curve and Its Role in Robust Estimation , 1974 .

[20]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[21]  P. J. Huber The 1972 Wald Lecture Robust Statistics: A Review , 1972 .

[22]  B. Efron,et al.  Limiting the Risk of Bayes and Empirical Bayes Estimators—Part II: The Empirical Bayes Case , 1972 .

[23]  B. Efron,et al.  Limiting the Risk of Bayes and Empirical Bayes Estimators—Part I: The Bayes Case , 1971 .

[24]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .