On assembly sequence planning using Petri nets

Petri nets have been proposed as a suitable tool for expressing precedence constraints and computing assembly sequences. Motivations for using Petri nets stem from their clear and well-defined semantics as well as from the formal analysis tools and techniques available. In this paper the operation and properties of Petri net models representing assembly plans are reconnected to the fundamental properties of Petri nets. In spite of the work already done on assembly planning using Petri nets, we feel that some of these results can benefit from a deeper binding to Petri net analysis techniques. This reinterpretation leads to more efficient and straightforward techniques for finding all assembly sequences, selecting the best sequence according to some cost criterion, composing subassemblies, and evaluating plan performance in some specified workcell setup.

[1]  R. Groppetti,et al.  On the application of coloured Petri nets to computer aided assembly planning , 1994, ETFA '94. 1994 IEEE Symposium on Emerging Technologies and Factory Automation. (SEIKEN) Symposium) -Novel Disciplines for the Next Century- Proceedings.

[2]  Arthur C. Sanderson,et al.  AND/OR graph representation of assembly plans , 1986, IEEE Trans. Robotics Autom..

[3]  Weixong Zhang,et al.  Representation of assembly and automatic robot planning by Petri net , 1989, IEEE Trans. Syst. Man Cybern..

[4]  C. V. Ramamoorthy,et al.  Performance Evaluation of Asynchronous Concurrent Systems Using Petri Nets , 1980, IEEE Transactions on Software Engineering.

[5]  Francesco Zanichelli,et al.  Synthesis of GSPN models for workload mapping on concurrent architectures , 1993, Proceedings of 5th International Workshop on Petri Nets and Performance Models.

[6]  Damian M. Lyons,et al.  Assembly and task planning: a taxonomy , 1994, IEEE Robotics & Automation Magazine.

[7]  J. P. Thomas A Petri Net Framework For Representing Mechanical Assembly Sequences , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Sukhan Lee,et al.  Backward assembly planning with assembly cost analysis , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[9]  Shigeru Okuma,et al.  On algebraic and graph structural properties of assembly Petri net , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[10]  Manuel Silva,et al.  A Simple and Fast Algorithm to Obtain All Invariants of a Generalized Petri Net , 1980, Selected Papers from the First and the Second European Workshop on Application and Theory of Petri Nets.

[11]  A. Sanderson,et al.  Task sequence planning using fuzzy Petri nets , 1991, Conference Proceedings 1991 IEEE International Conference on Systems, Man, and Cybernetics.

[12]  G. Conte,et al.  Parallel State Space Exploration for GSPN Models , 1995, Application and Theory of Petri Nets.

[13]  Joël Favrel,et al.  Generalized Petri Net Reduction Method , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[14]  J.P. Thomas,et al.  Constructing assembly plans , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[15]  Tadao Murata,et al.  Petri nets: Properties, analysis and applications , 1989, Proc. IEEE.

[16]  T. Kanehara,et al.  On algebraic and graph structural properties of assembly Petri net - Searching by linear programming , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[17]  Arthur C. Sanderson,et al.  Task sequence planning in a robot workcell using AND/OR nets , 1991, Proceedings of the 1991 IEEE International Symposium on Intelligent Control.