Mapping the parietal cortex of human and non-human primates

[1]  Maurizio Corbetta,et al.  Distribution of activity across the monkey cerebral cortical surface, thalamus and midbrain during rapid, visually guided saccades. , 2006, Cerebral cortex.

[2]  A. Schleicher,et al.  Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus , 2006, The Journal of comparative neurology.

[3]  G A Orban,et al.  Attentional responses to unattended stimuli in human parietal cortex. , 2005, Brain : a journal of neurology.

[4]  G. Orban,et al.  Observing Others: Multiple Action Representation in the Frontal Lobe , 2005, Science.

[5]  A. Churchland,et al.  Discharge properties of MST neurons that project to the frontal pursuit area in macaque monkeys. , 2005, Journal of neurophysiology.

[6]  D. Heeger,et al.  Topographic maps of visual spatial attention in human parietal cortex. , 2005, Journal of neurophysiology.

[7]  G. Fink,et al.  REVIEW: The functional organization of the intraparietal sulcus in humans and monkeys , 2005, Journal of anatomy.

[8]  G. Orban,et al.  Specificity of regions processing biological motion , 2005, The European journal of neuroscience.

[9]  Scott T. Grafton,et al.  Cortical topography of human anterior intraparietal cortex active during visually guided grasping. , 2005, Brain research. Cognitive brain research.

[10]  G. Rizzolatti,et al.  Parietal Lobe: From Action Organization to Intention Understanding , 2005, Science.

[11]  Brian A Wandell,et al.  Visual field map clusters in human cortex , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[12]  Svetlana S. Georgieva,et al.  Using Functional Magnetic Resonance Imaging to Assess Adaptation and Size Invariance of Shape Processing by Humans and Monkeys , 2005, The Journal of Neuroscience.

[13]  Nicole Wenderoth,et al.  Changes in Brain Activation during the Acquisition of a Multifrequency Bimanual Coordination Task: From the Cognitive Stage to Advanced Levels of Automaticity , 2005, The Journal of Neuroscience.

[14]  F. Lacquaniti,et al.  Representation of Visual Gravitational Motion in the Human Vestibular Cortex , 2005, Science.

[15]  M. Sereno,et al.  From monkeys to humans: what do we now know about brain homologies? , 2005, Current Opinion in Neurobiology.

[16]  M. Shadlen,et al.  A representation of the hazard rate of elapsed time in macaque area LIP , 2005, Nature Neuroscience.

[17]  G. Orban,et al.  Is there a unique LIP? A functional imaging study of saccadic representation in the parietal cortex of the awake monkey , 2005 .

[18]  Benjamin J. Shannon,et al.  Functional-Anatomic Correlates of Memory Retrieval That Suggest Nontraditional Processing Roles for Multiple Distinct Regions within Posterior Parietal Cortex , 2004, The Journal of Neuroscience.

[19]  Guy A. Orban,et al.  Visual Activation in Prefrontal Cortex is Stronger in Monkeys than in Humans , 2004, Journal of Cognitive Neuroscience.

[20]  A. Berthoz,et al.  Reference Frames for Spatial Cognition: Different Brain Areas are Involved in Viewer-, Object-, and Landmark-Centered Judgments About Object Location , 2004, Journal of Cognitive Neuroscience.

[21]  G. Orban,et al.  Color discrimination involves ventral and dorsal stream visual areas. , 2004, Cerebral cortex.

[22]  G. Orban,et al.  Comparative mapping of higher visual areas in monkeys and humans , 2004, Trends in Cognitive Sciences.

[23]  W. Newsome,et al.  Matching Behavior and the Representation of Value in the Parietal Cortex , 2004, Science.

[24]  G. Orban,et al.  Attention to 3-D Shape, 3-D Motion, and Texture in 3-D Structure from Motion Displays , 2004, Journal of Cognitive Neuroscience.

[25]  A. Berthoz,et al.  Navigating in a virtual three-dimensional maze: how do egocentric and allocentric reference frames interact? , 2004, Brain research. Cognitive brain research.

[26]  M. Behrmann,et al.  Parietal cortex and attention , 2004, Current Opinion in Neurobiology.

[27]  D. V. van Essen,et al.  The Processing of Visual Shape in the Cerebral Cortex of Human and Nonhuman Primates: A Functional Magnetic Resonance Imaging Study , 2004, The Journal of Neuroscience.

[28]  Y. Miyashita,et al.  Functional Magnetic Resonance Imaging of Macaque Monkeys Performing Visually Guided Saccade Tasks Comparison of Cortical Eye Fields with Humans , 2004, Neuron.

[29]  Doris Y. Tsao,et al.  Response to Tyler: Representation of stereoscopic structure in human and monkey cortex , 2004, Trends in Neurosciences.

[30]  G. Rizzolatti,et al.  Localization of grasp representations in humans by PET: 1. Observation versus execution , 1996, Experimental Brain Research.

[31]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[32]  Guy A. Orban,et al.  Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI , 2003, Neuropsychologia.

[33]  P. Glimcher The neurobiology of visual-saccadic decision making. , 2003, Annual review of neuroscience.

[34]  G. Orban,et al.  A Higher Order Motion Region in Human Inferior Parietal Lobule Evidence from fMRI , 2003, Neuron.

[35]  Ravi S. Menon,et al.  Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas , 2003, Experimental Brain Research.

[36]  Richard A. Andersen,et al.  FMRI evidence for a 'parietal reach region' in the human brain , 2003, Experimental Brain Research.

[37]  G. Rizzolatti,et al.  Two different streams form the dorsal visual system: anatomy and functions , 2003, Experimental Brain Research.

[38]  Olivier P. Faugeras,et al.  The Retinotopic Organization of Primate Dorsal V4 and Surrounding Areas: A Functional Magnetic Resonance Imaging Study in Awake Monkeys , 2003, The Journal of Neuroscience.

[39]  S. Treue Visual attention: the where, what, how and why of saliency , 2003, Current Opinion in Neurobiology.

[40]  Doris Y. Tsao,et al.  Stereopsis Activates V3A and Caudal Intraparietal Areas in Macaques and Humans , 2003, Neuron.

[41]  M. Corbetta,et al.  Functional Organization of Human Intraparietal and Frontal Cortex for Attending, Looking, and Pointing , 2003, The Journal of Neuroscience.

[42]  P. Dechent,et al.  Characterization of the human visual V6 complex by functional magnetic resonance imaging , 2003, The European journal of neuroscience.

[43]  L. Krubitzer,et al.  Nature versus nurture revisited: an old idea with a new twist , 2003, Progress in Neurobiology.

[44]  J. Assad,et al.  Neural coding of behavioral relevance in parietal cortex , 2003, Current Opinion in Neurobiology.

[45]  S. Yantis,et al.  Cortical mechanisms of space-based and object-based attentional control , 2003, Current Opinion in Neurobiology.

[46]  J. Gold,et al.  The Influence of Behavioral Context on the Representation of a Perceptual Decision in Developing Oculomotor Commands , 2003, The Journal of Neuroscience.

[47]  J. Driver,et al.  Preparatory states in crossmodal spatial attention: spatial specificity and possible control mechanisms , 2003, Experimental Brain Research.

[48]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[49]  Olivier D. Faugeras,et al.  Flows of diffeomorphisms for multimodal image registration , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[50]  G. Orban,et al.  Extracting 3D from Motion: Differences in Human and Monkey Intraparietal Cortex , 2002, Science.

[51]  Tomoka Naganuma,et al.  Neural Correlates for Perception of 3D Surface Orientation from Texture Gradient , 2002, Science.

[52]  R. Johansson,et al.  Engagement of gaze in capturing targets for future sequential manual actions. , 2002, Journal of neurophysiology.

[53]  S. Yantis,et al.  Transient neural activity in human parietal cortex during spatial attention shifts , 2002, Nature Neuroscience.

[54]  Frank Bremmer,et al.  ã Federation of European Neuroscience Societies Heading encoding in the macaque ventral intraparietal area (VIP) , 2022 .

[55]  François Klam,et al.  ã Federation of European Neuroscience Societies Visual±vestibular interactive responses in the macaque ventral intraparietal area (VIP) , 2022 .

[56]  J. Kaas,et al.  Convergences in the Modular and Areal Organization of the Forebrain of Mammals: Implications for the Reconstruction of Forebrain Evolution , 2002, Brain, Behavior and Evolution.

[57]  Alex R. Wade,et al.  Functional measurements of human ventral occipital cortex: retinotopy and colour. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[58]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[59]  Guy A. Orban,et al.  Functional MRI in the Awake Monkey: The Missing Link , 2002, Journal of Cognitive Neuroscience.

[60]  K. Zilles,et al.  Crossmodal Processing of Object Features in Human Anterior Intraparietal Cortex An fMRI Study Implies Equivalencies between Humans and Monkeys , 2002, Neuron.

[61]  Anders M. Dale,et al.  Repeated fMRI Using Iron Oxide Contrast Agent in Awake, Behaving Macaques at 3 Tesla , 2002, NeuroImage.

[62]  J. Gottlieb Parietal mechanisms of target representation , 2002, Current Opinion in Neurobiology.

[63]  M. Corbetta,et al.  Neural Systems for Visual Orienting and Their Relationships to Spatial Working Memory , 2002, Journal of Cognitive Neuroscience.

[64]  R. Wurtz,et al.  Comparison of cortico-cortical and cortico-collicular signals for the generation of saccadic eye movements. , 2002, Journal of neurophysiology.

[65]  S. Dehaene,et al.  Topographical Layout of Hand, Eye, Calculation, and Language-Related Areas in the Human Parietal Lobe , 2002, Neuron.

[66]  R. Andersen,et al.  Intentional maps in posterior parietal cortex. , 2002, Annual review of neuroscience.

[67]  L. Chalupa,et al.  Organization of Visual Areas in Macaque and Human Cerebral Cortex , 2002 .

[68]  G. Orban,et al.  Visual Motion Processing Investigated Using Contrast Agent-Enhanced fMRI in Awake Behaving Monkeys , 2001, Neuron.

[69]  P. Cavanagh,et al.  Attention Response Functions Characterizing Brain Areas Using fMRI Activation during Parametric Variations of Attentional Load , 2001, Neuron.

[70]  M. Sereno,et al.  Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans , 2001, Science.

[71]  H. Sakata,et al.  From Three-Dimensional Space Vision to Prehensile Hand Movements: The Lateral Intraparietal Area Links the Area V3A and the Anterior Intraparietal Area in Macaques , 2001, The Journal of Neuroscience.

[72]  Ravi S. Menon,et al.  Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. , 2001, Journal of neurophysiology.

[73]  W. Newsome,et al.  Neural basis of a perceptual decision in the parietal cortex (area LIP) of the rhesus monkey. , 2001, Journal of neurophysiology.

[74]  G. Rizzolatti,et al.  The Cortical Motor System , 2001, Neuron.

[75]  D. Gitelman,et al.  Functional Specificity of Superior Parietal Mediation of Spatial Shifting , 2001, NeuroImage.

[76]  R. Johansson,et al.  Eye–Hand Coordination in Object Manipulation , 2001, The Journal of Neuroscience.

[77]  Michael S. Beauchamp,et al.  A Parametric fMRI Study of Overt and Covert Shifts of Visuospatial Attention , 2001, NeuroImage.

[78]  Guy A. Orban,et al.  The Neural Substrate of Orientation Working Memory , 2001, Journal of Cognitive Neuroscience.

[79]  S. Ben Hamed,et al.  Representation of the visual field in the lateral intraparietal area of macaque monkeys: a quantitative receptive field analysis , 2001, Experimental Brain Research.

[80]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[81]  M. A. Steinmetz,et al.  Neuronal responses in area 7a to multiple stimulus displays: II. responses are suppressed at the cued location. , 2001, Cerebral cortex.

[82]  A. Parker,et al.  Perceptually Bistable Three-Dimensional Figures Evoke High Choice Probabilities in Cortical Area MT , 2001, The Journal of Neuroscience.

[83]  Michela Gamberini,et al.  ‘Arm‐reaching’ neurons in the parietal area V6A of the macaque monkey , 2001, The European journal of neuroscience.

[84]  N. Kanwisher,et al.  Neuroimaging of cognitive functions in human parietal cortex , 2001, Current Opinion in Neurobiology.

[85]  C. Büchel,et al.  Surface orientation discrimination activates caudal and anterior intraparietal sulcus in humans: an event-related fMRI study. , 2001, Journal of neurophysiology.

[86]  R. Andersen,et al.  The parietal reach region codes the next planned movement in a sequential reach task. , 2001, Journal of neurophysiology.

[87]  K. Zilles,et al.  Polymodal Motion Processing in Posterior Parietal and Premotor Cortex A Human fMRI Study Strongly Implies Equivalencies between Humans and Monkeys , 2001, Neuron.

[88]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[89]  S. Zeki,et al.  The neurology of saccades and covert shifts in spatial attention: an event-related fMRI study. , 2000, Brain : a journal of neurology.

[90]  A Berthoz,et al.  Visual perception of motion and 3-D structure from motion: an fMRI study. , 2000, Cerebral cortex.

[91]  M. Goldberg,et al.  Response of neurons in the lateral intraparietal area to a distractor flashed during the delay period of a memory-guided saccade. , 2000, Journal of neurophysiology.

[92]  R. Turner,et al.  Form and motion coherence activate independent, but not dorsal/ventral segregated, networks in the human brain , 2000, Current Biology.

[93]  H. Sakata,et al.  Selectivity for the shape, size, and orientation of objects for grasping in neurons of monkey parietal area AIP. , 2000, Journal of neurophysiology.

[94]  H. Sakata,et al.  Parietal neurons represent surface orientation from the gradient of binocular disparity. , 2000, Journal of neurophysiology.

[95]  N. Kanwisher,et al.  Cortical Regions Involved in Perceiving Object Shape , 2000, The Journal of Neuroscience.

[96]  E. J. Tehovnik,et al.  Eye fields in the frontal lobes of primates , 2000, Brain Research Reviews.

[97]  M. Corbetta,et al.  Erratum to “Translocation machinery for synthesis of integral membrane and secretory proteins in dendritic spines” , 2000, Nature Neuroscience.

[98]  H. Forssberg Neural control of human motor development , 1999, Current Opinion in Neurobiology.

[99]  Guy Marchal,et al.  Human Cortical Regions Involved in Extracting Depth from Motion , 1999, Neuron.

[100]  M. Corbetta,et al.  Areas Involved in Encoding and Applying Directional Expectations to Moving Objects , 1999, The Journal of Neuroscience.

[101]  R. J. Seitz,et al.  A fronto‐parietal circuit for object manipulation in man: evidence from an fMRI‐study , 1999, The European journal of neuroscience.

[102]  G. Orban,et al.  Motion-responsive regions of the human brain , 1999, Experimental Brain Research.

[103]  N. Kanwisher,et al.  The Generality of Parietal Involvement in Visual Attention , 1999, Neuron.

[104]  Michael L. Platt,et al.  Neural correlates of decision variables in parietal cortex , 1999, Nature.

[105]  J. Haxby,et al.  Functional anatomy of pursuit eye movements in humans as revealed by fMRI. , 1999, Journal of neurophysiology.

[106]  J. Jonides,et al.  Storage and executive processes in the frontal lobes. , 1999, Science.

[107]  P. Cavanagh,et al.  Cortical fMRI activation produced by attentive tracking of moving targets. , 1998, Journal of neurophysiology.

[108]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[109]  John H. R. Maunsell,et al.  Shape selectivity in primate lateral intraparietal cortex , 1998, Nature.

[110]  R. Andersen,et al.  Encoding of three-dimensional structure-from-motion by primate area MT neurons , 1998, Nature.

[111]  A. Dale,et al.  The representation of the ipsilateral visual field in human cerebral cortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[112]  F. Lacquaniti,et al.  Visuomotor Transformations for Reaching to Memorized Targets: A PET Study , 1997, NeuroImage.

[113]  M Jeannerod,et al.  Visual pathways for object-oriented action and object recognition: functional anatomy with PET. , 1997, Cerebral cortex.

[114]  M. Tanaka,et al.  Coding of modified body schema during tool use by macaque postcentral neurones. , 1996, Neuroreport.

[115]  R. Andersen,et al.  Motor intention activity in the macaque's lateral intraparietal area. I. Dissociation of motor plan from sensory memory. , 1996, Journal of neurophysiology.

[116]  E A Cabanis,et al.  Location of the human posterior eye field with functional magnetic resonance imaging. , 1996, Journal of neurology, neurosurgery, and psychiatry.

[117]  Scott T. Grafton,et al.  Functional anatomy of pointing and grasping in humans. , 1996, Cerebral cortex.

[118]  H. Sakata,et al.  Neural mechanisms of visual guidance of hand action in the parietal cortex of the monkey. , 1995, Cerebral cortex.

[119]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[120]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[121]  G. Orban,et al.  Many areas in the human brain respond to visual motion. , 1994, Journal of neurophysiology.

[122]  S Zeki,et al.  Going beyond the information given: the relation of illusory visual motion to brain activity , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[123]  A. Berthoz,et al.  PET study of voluntary saccadic eye movements in humans: basal ganglia-thalamocortical system and cingulate cortex involvement. , 1993, Journal of neurophysiology.

[124]  M. Goodale,et al.  Separate visual pathways for perception and action , 1992, Trends in Neurosciences.

[125]  Y Agid,et al.  Cortical control of reflexive visually-guided saccades. , 1991, Brain : a journal of neurology.

[126]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[127]  L. Fogassi,et al.  Eye position effects on visual, memory, and saccade-related activity in areas LIP and 7a of macaque , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[128]  G. Rizzolatti,et al.  Reorienting attention across the horizontal and vertical meridians: Evidence in favor of a premotor theory of attention , 1987, Neuropsychologia.