Recent advances in exciton-based quantum information processing in quantum dot nanostructures

Recent experimental developments in the field of semiconductor quantum dot (QD) spectroscopy are discussed. Firstly, we report about single QD exciton two-level systems and their coherent properties in terms of single-qubit manipulations. In the second part, we report on coherent quantum coupling in a prototype 'two-qubit' system consisting of a vertically stacked pair of QDs. The interaction can be tuned in such QD molecule devices using an applied voltage as external parameter.

[1]  K. Hinzer,et al.  Optical Spectroscopy of Electronic States in a Single Pair of Vertically Coupled Self‐Assembled Quantum Dots , 2001 .

[2]  M. Henini,et al.  Carrier thermalization within a disordered ensemble of self-assembled quantum dots , 2000 .

[3]  Thomas F. Krauss,et al.  Charged and neutral exciton complexes in individual self-assembled In(Ga)As quantum dots , 2001 .

[4]  G. Abstreiter,et al.  Atomically Precise GaAs/AlGaAs Quantum Dots Fabricated by Twofold Cleaved Edge Overgrowth , 1997 .

[5]  Alfred Forchel,et al.  Temperature dependence of the exciton homogeneous linewidth in In 0.60 Ga 0.40 As/GaAs self-assembled quantum dots , 2002 .

[6]  G. Böhm,et al.  STM-photocurrent-spectroscopy on single self-assembled InGaAs quantum dots , 2000 .

[7]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[8]  J. Baumberg,et al.  Coherent spectroscopy of optically gated charged single InGaAs quantum dots. , 2003, Physical review letters.

[9]  A. Zunger,et al.  Theory of excitonic spectra and entanglement engineering in dot molecules. , 2004, Physical review letters.

[10]  Fedor Jelezko,et al.  Read-out of single spins by optical spectroscopy , 2004 .

[11]  Harris,et al.  Vertically aligned and electronically coupled growth induced InAs islands in GaAs. , 1996, Physical review letters.

[12]  Legrand,et al.  Imaging the wave-function amplitudes in cleaved semiconductor quantum boxes , 2000, Physical review letters.

[13]  Jen-Inn Chyi,et al.  Photocurrent studies of the carrier escape process from InAs self-assembled quantum dots , 2000 .

[14]  M. S. Skolnick,et al.  Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots. , 2000, Physical review letters.

[15]  D. Bimberg,et al.  Ultralong dephasing time in InGaAs quantum dots. , 2001, Physical review letters.

[16]  M. Bichler,et al.  Power broadening of the exciton linewidth in a single InGaAs∕GaAs quantum dot , 2004 .

[17]  A. Holmes,et al.  Interplay of Rabi oscillations and quantum interference in semiconductor quantum dots. , 2002, Physical review letters.

[18]  I. Shtrichman,et al.  Photoluminescence of a single InAs quantum dot molecule under applied electric field , 2002 .

[19]  L. J. Sham,et al.  Rabi oscillations of excitons in single quantum dots. , 2001, Physical review letters.

[20]  A. Lemaître,et al.  Quantum box size effect on vertical self-alignment studied using cross-sectional scanning tunneling microscopy , 1999 .

[21]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[22]  G. Abstreiter,et al.  Nonlinear ground-state absorption observed in a single quantum dot , 2001 .

[23]  G. Abstreiter,et al.  Optical spectroscopy on a single InGaAs/GaAs quantum dot in the few-exciton limit , 2000 .

[24]  Gang Chen,et al.  NONLINEAR NANO-OPTICS : PROBING ONE EXCITON AT A TIME , 1998 .

[25]  Theory of fast quantum control of exciton dynamics in semiconductor quantum dots , 2001, cond-mat/0109252.

[26]  G. Bauer,et al.  Structural properties of self-organized semiconductor nanostructures , 2004 .

[27]  Daniel Loss,et al.  Recipes for spin-based quantum computing , 2004, cond-mat/0412028.

[28]  P. Zoller,et al.  Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence , 2003, quant-ph/0304044.

[29]  A. Zrenner,et al.  Coherent properties of a two-level system based on a quantum-dot photodiode , 2002, Nature.

[30]  I. Rabi Space Quantization in a Gyrating Magnetic Field , 1937 .

[31]  R. L. Jones,et al.  Growth of vertically self-organized InGaAs quantum dots with narrow inhomogeneous broadening , 2000 .

[32]  Wolfgang Werner Langbein,et al.  Rabi oscillations in the excitonic ground-state transition of InGaAs quantum dots , 2002 .

[33]  O. Schmidt,et al.  Morphology response to strain field interferences in stacks of highly ordered quantum dot arrays. , 2003, Physical review letters.

[34]  D. Gammon,et al.  An All-Optical Quantum Gate in a Semiconductor Quantum Dot , 2003, Science.

[35]  H. Kamada,et al.  Exciton Rabi oscillation in a single quantum dot. , 2001, Physical review letters.

[36]  J. Eberly,et al.  Optical resonance and two-level atoms , 1975 .

[37]  A. Forchel,et al.  Control of vertically coupled InGaAs/GaAs quantum dots with electric fields. , 2005, Physical review letters.

[38]  G. Abstreiter,et al.  Photocurrent and photoluminescence of a single self-assembled quantum dot in electric fields , 2001 .

[39]  Shih,et al.  Nonuniform composition profile in In0.5Ga0.5As alloy quantum dots , 2000, Physical review letters.

[40]  C. Piermarocchi,et al.  Experimental realization of the one qubit Deutsch-Jozsa algorithm in a quantum dot , 2004, cond-mat/0401226.

[41]  Gammon,et al.  Optically induced entanglement of excitons in a single quantum Dot , 2000, Science.

[42]  Brunner,et al.  Sharp-line photoluminescence and two-photon absorption of zero-dimensional biexcitons in a GaAs/AlGaAs structure. , 1994, Physical review letters.

[43]  Z. R. Wasilewski,et al.  Size and shape engineering of vertically stacked self-assembled quantum dots , 1999 .

[44]  E C Clark,et al.  Direct observation of controlled coupling in an individual quantum dot molecule. , 2005, Physical review letters.

[45]  P. Petroff,et al.  Multiexciton Spectroscopy of a Single Self-Assembled Quantum Dot , 1998, cond-mat/9803275.

[46]  D. DiVincenzo,et al.  Coupled quantum dots as quantum gates , 1998, cond-mat/9808026.

[47]  Gammon,et al.  Fine structure splitting in the optical spectra of single GaAs quantum dots. , 1996, Physical review letters.

[48]  Z. R. Wasilewski,et al.  Coupled InAs/GaAs quantum dots with well-defined electronic shells , 2000 .

[49]  M. S. Skolnick,et al.  Quantum-confined Stark shifts of charged exciton complexes in quantum dots , 2004 .

[50]  Samuelson,et al.  Optical studies of individual InAs quantum dots in GaAs: few-particle effects , 1998, Science.

[51]  Johann Peter Reithmaier,et al.  ELECTRON AND HOLE G FACTORS AND EXCHANGE INTERACTION FROM STUDIES OF THE EXCITON FINE STRUCTURE IN IN0.60GA0.40AS QUANTUM DOTS , 1999 .

[52]  B. Legrand,et al.  Scanning tunneling microscopy and scanning tunneling spectroscopy of self-assembled InAs quantum dots , 1998 .

[53]  P. G. Piva,et al.  Manipulating the energy levels of semiconductor quantum dots , 1999 .

[54]  F. Rossi,et al.  Quantum information processing with semiconductor macroatoms. , 2000, Physical review letters.

[55]  Kobayashi,et al.  Vertically self-organized InAs quantum box islands on GaAs(100). , 1995, Physical review letters.

[56]  M. Hopkinson,et al.  Stacked low-growth-rate InAs quantum dots studied at the atomic level by cross-sectional scanning tunneling microscopy , 2003 .

[57]  M. Lagally,et al.  Self-organization in growth of quantum dot superlattices. , 1996, Physical review letters.

[58]  Dieter Schuh,et al.  Optically programmable electron spin memory using semiconductor quantum dots , 2004, Nature.

[59]  K. Hinzer,et al.  Coupling and entangling of quantum states in quantum dot molecules. , 2001, Science.

[60]  O. Schmidt,et al.  Closely stacked InAs/GaAs quantum dots grown at low growth rate , 2002 .

[61]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[62]  G. Abstreiter,et al.  Coupled quantum dots fabricated by cleaved edge overgrowth: from artificial atoms to molecules , 1997, Science.

[63]  P. Machnikowski,et al.  Resonant nature of phonon-induced damping of Rabi oscillations in quantum dots , 2003, cond-mat/0305165.

[64]  P. Hawrylak,et al.  Hidden symmetries in the energy levels of excitonic ‘artificial atoms’ , 2000, Nature.

[65]  D. Bouwmeester,et al.  The Physics of Quantum Information , 2000 .

[66]  B. Gerardot,et al.  Voltage-controlled optics of a quantum dot. , 2004, Physical review letters.