Energy harvesting for IoT road monitoring systems

Internet of Things (IoT) solutions guarantee the high performance requested by users and authorities in terms of efficiency, sustainability, connectivity, and durability for modern transportation infrastructures, allowing, at the same time, small size, low power consumption, wireless transmission and easily deployable solutions. IoT monitoring systems powered through Energy Harvesting Technologies (EHTs) are often indicated as the most efficient solutions to address these requests because of several advantages (e.g., remote management simplification, independence from electricity grid). In this paper, the most used EHTs in the field of road infrastructures were analyzed and, among them, a photovoltaic standalone system (PVSS) was selected and considered as the power supply unit of an electronic structural health monitoring (SHM) system. In particular, a network of sensor units (SUs), wirelessly connected to one central unit (CU), acting as an innovative road pavement monitoring system solution was taken in account as benchmark. Consequently, the objective of this study is to draw guidelines for the designer that can establish the proper sizing of the PVSS, based on the energy consumption of the SHM system, according to multiple factors, such as typology and number of sensors, frequency of measurements, duty cycle, and days of autonomy. RÉSUMÉ. Les solutions d’Internet des objets (IdO) garantissent la haute performance demandée par les utilisateurs et les autorités en termes d’efficacité, de durabilité, de connectivité et de durabilité pour les infrastructures de transport modernes, permettant à la fois une petite dimension, une faible consommation d’énergie, une transmission sans fil et des solutions faciles à déployer. Les systèmes de surveillance d’IdO alimentés par les technologies de récolte d'énergie (EHTs, le sigle de « Energy Harvesting Technologies » en anglais) sont souvent indiqués comme les solutions les plus efficaces pour répondre à ces demandes en raison de plusieurs avantages (par exemple, la simplification de la gestion à distance, l'indépendance du réseau électrique). Dans cet article, les EHTs les plus souvent utilisées dans le domaine des infrastructures routières ont été analysés et, parmi eux, un système photovoltaïque autonome (PVSS, le sigle 606 I2M. Volume 17 – n° 4/2018 de « photovoltaic standalone system » en anglais) a été sélectionné et considéré comme l'unité d'alimentation électrique d'un système électronique de contrôle de santé intégré (CSI). En particulier, un réseau d'unités de capteurs (SU, le sigle de « sensor unit » en anglais) connecté sans fil à une unité centrale (CU, le sigle de « central unit » en anglais) qui fonctionne en tant que solution des systèmes de surveillance des chaussées routières innovantes a été pris en compte comme standard. Par conséquent, l’objectif de cette étude est d’élaborer des lignes directrices pour le concepteur en eux permettant d’établir le bon dimensionnement du PVSS, en fonction de la consommation d’énergie du système de CSI anisi que des multiples facteurs, tels que la typologie et le nombre de capteurs, la fréquence des mesures. , cycle de travail et jours d'autonomie.

[1]  Rizalman Mamat,et al.  Solar PV tree design: A review , 2018 .

[2]  Othman Sidek,et al.  Micro-Electro-Mechanical System (MEMS)-Based Piezoelectric Energy Harvester for Ambient Vibrations , 2015 .

[3]  Adelino Ferreira,et al.  Energy harvesting on road pavements: state of the art , 2016 .

[4]  Fernand Meyer,et al.  A comparative study of LPWAN technologies for large-scale IoT deployment , 2019, ICT Express.

[5]  Joshua R. Smith,et al.  Power consumption analysis of Bluetooth Low Energy, ZigBee and ANT sensor nodes in a cyclic sleep scenario , 2013, 2013 IEEE International Wireless Symposium (IWS).

[6]  Massimo Merenda,et al.  Dynamic impedance matching network for RF energy harvesting systems , 2014, 2014 IEEE RFID Technology and Applications Conference (RFID-TA).

[7]  Karim Chatti,et al.  A self-powered surface sensing approach for detection of bottom-up cracking in asphalt concrete pavements: Theoretical/numerical modeling , 2017 .

[8]  B. Lafarge,et al.  Analysis and Optimization of a Piezoelectric Harvester on a Car Damper , 2015 .

[9]  Riccardo,et al.  Sensing road pavement health status through acoustic signals analysis , 2017, 2017 13th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME).

[10]  Lukai Guo,et al.  Modeling a new energy harvesting pavement system with experimental verification , 2017 .

[11]  Antonio Iera,et al.  Performance assessment of an enhanced RFID sensor tag for long-run sensing applications , 2014, IEEE SENSORS 2014 Proceedings.

[12]  Fabio Zito,et al.  CMOS wireless temperature sensor with integrated radiating element , 2010 .

[13]  Jaeyun Lee,et al.  Development of a piezoelectric energy harvesting system for implementing wireless sensors on the tires , 2014 .

[14]  Antonio Iera,et al.  6lo-RFID: A Framework for Full Integration of Smart UHF RFID Tags into the Internet of Things , 2017, IEEE Network.

[15]  Yue Xiao,et al.  A review on hydronic asphalt pavement for energy harvesting and snow melting , 2015 .

[16]  Mădălin-Dorin Pop,et al.  A Comparison Between Smart City Approaches in Road Traffic Management , 2018 .

[17]  Qian Zhao,et al.  A preliminary study on the highway piezoelectric power supply system , 2017 .

[18]  Massimo Merenda,et al.  Self-powered sensors for road pavements , 2016 .

[19]  Haocheng Xiong,et al.  Piezoelectric energy harvester for public roadway: On-site installation and evaluation , 2016 .

[20]  K. Bataineh,et al.  Performance analysis of stand-alone solar dish Stirling system for electricity generation , 2017 .

[21]  Kamaruzzaman Sopian,et al.  Sizing of a standalone photovoltaic/battery system at minimum cost for remote housing electrification in Sohar, Oman , 2013 .

[22]  Ahmed Youssef,et al.  Operations of electric vehicle traction system , 2018, Mathematical Modelling of Engineering Problems.

[23]  Liangliang Sun,et al.  A novel hybrid energy system combined with solar-road and soil-regenerator: Dynamic model and operational performance , 2018 .

[24]  Francesco G. Della Corte,et al.  An autonomous and energy efficient Smart Sensor Platform , 2014, IEEE SENSORS 2014 Proceedings.

[25]  Fernando-Juan García-Diego,et al.  An energy-efficient internet of things (IoT) architecture for preventive conservation of cultural heritage , 2018, Future Gener. Comput. Syst..

[26]  Fereidoon Moghadas Nejad,et al.  Solar pavement: A new emerging technology , 2017 .

[27]  Ming He,et al.  Application of piezoelectric transducer in energy harvesting in pavement , 2017, International Journal of Pavement Research and Technology.

[28]  Hao Wang,et al.  Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review , 2018 .

[29]  Djamel Bensahal,et al.  Prediction of global solar radiation on the horizontal area with the effect of relative humidity part: I , 2018, TECNICA ITALIANA-Italian Journal of Engineering Science.

[30]  Seung-Hoon Hwang,et al.  A survey on LPWA technology: LoRa and NB-IoT , 2017, ICT Express.

[31]  Lokesh Dhakar Triboelectric Devices for Power Generation and Self-Powered Sensing Applications , 2017 .

[32]  Arturo Montoya,et al.  Energy Harvesting from Roadways , 2016, ANT/SEIT.