Numerical Computation of the Conformal Map onto Lemniscatic Domains
暂无分享,去创建一个
[1] Thomas K. DeLillo,et al. Efficient Calculation of Schwarz–Christoffel Transformations for Multiply Connected Domains Using Laurent Series , 2013 .
[2] Rudolf Wegmann,et al. Chapter 9 – Methods for Numerical Conformal Mapping , 2005 .
[3] Lloyd N. Trefethen,et al. Numerical Algorithms Based on Analytic Function Values at Roots of Unity , 2014, SIAM J. Numer. Anal..
[4] Y. Saad,et al. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .
[5] J. L. Walsh,et al. On the conformal mapping of multiply connected regions , 1956 .
[6] Timothy H. McNicholl,et al. Computing Conformal Maps of Finitely Connected Domains onto Canonical Slit Domains , 2010, Theory of Computing Systems.
[7] Johan Helsing,et al. On the evaluation of layer potentials close to their sources , 2008, J. Comput. Phys..
[8] Paul Koebe,et al. Abhandlugnen zur Theorie der Konformen Abbildung , 1916 .
[9] J. Walsh,et al. ON A CANONICAL CONFORMAL MAPPING OF , 2010 .
[10] Rainer Kress,et al. A Nyström method for boundary integral equations in domains with corners , 1990 .
[11] Lee Khiy Wei,et al. A fast computational method for potential flows in multiply connected coastal domains , 2015 .
[12] Leslie Greengard,et al. A fast algorithm for particle simulations , 1987 .
[13] K. Atkinson. The Numerical Solution of Integral Equations of the Second Kind , 1997 .
[14] Darren Crowdy,et al. Conformal Mappings between Canonical Multiply Connected Domains , 2006 .
[15] Mohamed M. S. Nasser. Numerical Conformal Mapping via a Boundary Integral Equation with the Generalized Neumann Kernel , 2009, SIAM J. Sci. Comput..
[16] M. Ismail,et al. Boundary integral equations with the generalized Neumann kernel for Laplace's equation in multiply connected regions , 2011, Appl. Math. Comput..
[17] Anne Greenbaum,et al. Laplace's equation and the Dirichlet-Neumann map in multiply connected domains , 1991 .
[18] Darren Crowdy,et al. The Schwarz–Christoffel mapping to bounded multiply connected polygonal domains , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[19] F. Smithies,et al. Singular Integral Equations , 1977 .
[20] H. Landau,et al. On canonical conformal maps of multiply connected domains , 1959 .
[21] Jörg Liesen,et al. The conformal ‘bratwurst’ mapsand associated Faber polynomials , 2000, Numerische Mathematik.
[22] Mohamed M. S. Nasser,et al. Fast solution of boundary integral equations with the generalized Neumann kernel , 2013, 1308.5351.
[23] Thomas K. DeLillo,et al. Numerical Computation of the Schwarz-Christoffel Transformation for Multiply Connected Domains , 2011, SIAM J. Sci. Comput..
[24] Jörg Liesen,et al. Computing the logarithmic capacity of compact sets via conformal mapping , 2015 .
[25] Mohamed M. S. Nasser,et al. A Fast Boundary Integral Equation Method for Conformal Mapping of Multiply Connected Regions , 2013, SIAM J. Sci. Comput..
[26] Jörg Liesen,et al. Fast and Accurate Computation of the Logarithmic Capacity of Compact Sets , 2015, 1507.05793.
[27] Jörg Liesen,et al. Properties and Examples of Faber–Walsh Polynomials , 2015 .
[28] Mohamed M.S. Nasser,et al. Fast Computation of the Circular Map , 2014, 1403.5380.
[29] Darren Crowdy,et al. Schwarz–Christoffel mappings to unbounded multiply connected polygonal regions , 2007, Mathematical Proceedings of the Cambridge Philosophical Society.
[30] A. H. Murid,et al. Numerical Conformal Mapping of Unbounded Multiply Connected Regions onto Circular Slit Regions , 2014 .
[31] J. Walsh. Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .
[32] Mohamed M. S. Nasser,et al. The Riemann-Hilbert problem and the generalized Neumann kernel on multiply connected regions , 2008 .
[33] Mohamed M. S. Nasser,et al. Numerical conformal mapping of multiply connected regions onto the fifth category of Koebe’s canonical slit regions , 2013 .
[34] Tobin A. Driscoll,et al. Radial and circular slit maps of unbounded multiply connected circle domains , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[35] Mohamed M. S. Nasser,et al. Numerical conformal mapping of multiply connected regions onto the second, third and fourth categories of Koebeʼs canonical slit domains , 2011 .
[36] Olivier Sete,et al. On conformal maps from multiply connected domains onto lemniscatic domains , 2015 .
[37] Wei Luo,et al. Numerical conformal mapping of multiply connected domains to regions with circular boundaries , 2010, J. Comput. Appl. Math..
[38] Wilfred Kaplan,et al. Introduction to analytic functions , 1969 .
[39] A. Elcrat,et al. Schwarz-Christoffel mapping of multiply connected domains , 2004 .
[40] J. L. Walsh,et al. A generalization of Faber's polynomials , 1958 .
[41] A. Rathsfeld. Iterative solution of linear systems arising from the Nyström method for the double-layer potential equation over curves with corners , 1993 .
[42] Thomas K. DeLillo,et al. Schwarz-Christoffel Mapping of Bounded, Multiply Connected Domains , 2006 .
[43] Tobin A. Driscoll,et al. Computation of Multiply Connected Schwarz-Christoffel Maps for Exterior Domains , 2006 .
[44] Paul Koebe,et al. Abhandlungen zur Theorie der konformen Abbildung , 1916 .
[45] Henry C. Thacher,et al. Applied and Computational Complex Analysis. , 1988 .
[46] Mohamed M. S. Nasser,et al. A Boundary Integral Equation for Conformal Mapping of Bounded Multiply Connected Regions , 2009 .