Numerical Computation of the Conformal Map onto Lemniscatic Domains

We present a numerical method for the computation of the conformal map from unbounded multiply-connected domains onto lemniscatic domains. For $$\ell $$ℓ-times connected domains, the method requires solving $$\ell $$ℓ boundary integral equations with the Neumann kernel. This can be done in $$O(\ell ^2 n \log n)$$O(ℓ2nlogn) operations, where n is the number of nodes in the discretization of each boundary component of the multiply-connected domain. As demonstrated by numerical examples, the method works for domains with close-to-touching boundaries, non-convex boundaries, piecewise smooth boundaries, and for domains of high connectivity.

[1]  Thomas K. DeLillo,et al.  Efficient Calculation of Schwarz–Christoffel Transformations for Multiply Connected Domains Using Laurent Series , 2013 .

[2]  Rudolf Wegmann,et al.  Chapter 9 – Methods for Numerical Conformal Mapping , 2005 .

[3]  Lloyd N. Trefethen,et al.  Numerical Algorithms Based on Analytic Function Values at Roots of Unity , 2014, SIAM J. Numer. Anal..

[4]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[5]  J. L. Walsh,et al.  On the conformal mapping of multiply connected regions , 1956 .

[6]  Timothy H. McNicholl,et al.  Computing Conformal Maps of Finitely Connected Domains onto Canonical Slit Domains , 2010, Theory of Computing Systems.

[7]  Johan Helsing,et al.  On the evaluation of layer potentials close to their sources , 2008, J. Comput. Phys..

[8]  Paul Koebe,et al.  Abhandlugnen zur Theorie der Konformen Abbildung , 1916 .

[9]  J. Walsh,et al.  ON A CANONICAL CONFORMAL MAPPING OF , 2010 .

[10]  Rainer Kress,et al.  A Nyström method for boundary integral equations in domains with corners , 1990 .

[11]  Lee Khiy Wei,et al.  A fast computational method for potential flows in multiply connected coastal domains , 2015 .

[12]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[13]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[14]  Darren Crowdy,et al.  Conformal Mappings between Canonical Multiply Connected Domains , 2006 .

[15]  Mohamed M. S. Nasser Numerical Conformal Mapping via a Boundary Integral Equation with the Generalized Neumann Kernel , 2009, SIAM J. Sci. Comput..

[16]  M. Ismail,et al.  Boundary integral equations with the generalized Neumann kernel for Laplace's equation in multiply connected regions , 2011, Appl. Math. Comput..

[17]  Anne Greenbaum,et al.  Laplace's equation and the Dirichlet-Neumann map in multiply connected domains , 1991 .

[18]  Darren Crowdy,et al.  The Schwarz–Christoffel mapping to bounded multiply connected polygonal domains , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  F. Smithies,et al.  Singular Integral Equations , 1977 .

[20]  H. Landau,et al.  On canonical conformal maps of multiply connected domains , 1959 .

[21]  Jörg Liesen,et al.  The conformal ‘bratwurst’ mapsand associated Faber polynomials , 2000, Numerische Mathematik.

[22]  Mohamed M. S. Nasser,et al.  Fast solution of boundary integral equations with the generalized Neumann kernel , 2013, 1308.5351.

[23]  Thomas K. DeLillo,et al.  Numerical Computation of the Schwarz-Christoffel Transformation for Multiply Connected Domains , 2011, SIAM J. Sci. Comput..

[24]  Jörg Liesen,et al.  Computing the logarithmic capacity of compact sets via conformal mapping , 2015 .

[25]  Mohamed M. S. Nasser,et al.  A Fast Boundary Integral Equation Method for Conformal Mapping of Multiply Connected Regions , 2013, SIAM J. Sci. Comput..

[26]  Jörg Liesen,et al.  Fast and Accurate Computation of the Logarithmic Capacity of Compact Sets , 2015, 1507.05793.

[27]  Jörg Liesen,et al.  Properties and Examples of Faber–Walsh Polynomials , 2015 .

[28]  Mohamed M.S. Nasser,et al.  Fast Computation of the Circular Map , 2014, 1403.5380.

[29]  Darren Crowdy,et al.  Schwarz–Christoffel mappings to unbounded multiply connected polygonal regions , 2007, Mathematical Proceedings of the Cambridge Philosophical Society.

[30]  A. H. Murid,et al.  Numerical Conformal Mapping of Unbounded Multiply Connected Regions onto Circular Slit Regions , 2014 .

[31]  J. Walsh Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .

[32]  Mohamed M. S. Nasser,et al.  The Riemann-Hilbert problem and the generalized Neumann kernel on multiply connected regions , 2008 .

[33]  Mohamed M. S. Nasser,et al.  Numerical conformal mapping of multiply connected regions onto the fifth category of Koebe’s canonical slit regions , 2013 .

[34]  Tobin A. Driscoll,et al.  Radial and circular slit maps of unbounded multiply connected circle domains , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  Mohamed M. S. Nasser,et al.  Numerical conformal mapping of multiply connected regions onto the second, third and fourth categories of Koebeʼs canonical slit domains , 2011 .

[36]  Olivier Sete,et al.  On conformal maps from multiply connected domains onto lemniscatic domains , 2015 .

[37]  Wei Luo,et al.  Numerical conformal mapping of multiply connected domains to regions with circular boundaries , 2010, J. Comput. Appl. Math..

[38]  Wilfred Kaplan,et al.  Introduction to analytic functions , 1969 .

[39]  A. Elcrat,et al.  Schwarz-Christoffel mapping of multiply connected domains , 2004 .

[40]  J. L. Walsh,et al.  A generalization of Faber's polynomials , 1958 .

[41]  A. Rathsfeld Iterative solution of linear systems arising from the Nyström method for the double-layer potential equation over curves with corners , 1993 .

[42]  Thomas K. DeLillo,et al.  Schwarz-Christoffel Mapping of Bounded, Multiply Connected Domains , 2006 .

[43]  Tobin A. Driscoll,et al.  Computation of Multiply Connected Schwarz-Christoffel Maps for Exterior Domains , 2006 .

[44]  Paul Koebe,et al.  Abhandlungen zur Theorie der konformen Abbildung , 1916 .

[45]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[46]  Mohamed M. S. Nasser,et al.  A Boundary Integral Equation for Conformal Mapping of Bounded Multiply Connected Regions , 2009 .