Assessment of Forest Biomass using k-Neighbor Techniques - A Case Study in the Research Forest at Kangwon National University -

This study purposed to estimate the forest biomass using k-Nearest Neighbor (k-NN) algorithm. Multiple data sources were used for the analysis such as forest type map, field survey data and Landsat TM data. The accuracy of forest biomass was evaluated with the forest stratification, horizontal reference area (HRA) and spatial filtering. Forests were divided into 3 types such as conifers, broadleaved, and Korean pine (Pinus koriansis) forests. The applied radii of HRA were 4 km, 5 km and 10 km, respectively. The estimated biomass and mean bias for conifers forest was 222 t/ha and 1.8 t/ha when the value of k=8, the radius of HRA was 4 km, and modal was filtered. The estimated forest biomass of Korean pine was 245 t/ha when the value of k=8, the radius of HRA was 4km. The estimated mean biomass and mean bias for broadleaved forests were 251 t/ha and -1.6 t/ha, respectively, when the value of k=6, the radius of HRA was 10 km. The estimated total forest biomass by k-NN method was 799,000t and 237 t/ha. The estimated mean biomass by method was about 1t/ha more than that of filed survey data.