Graph Visualization

Black and white node link diagrams are the classic method to depict graphs, but these often fall short to give insight in large graphs or when attributes of nodes and edges play an important role. Graph visualization aims obtaining insight in such graphs using interactive graphical representations. A variety of ingredients, including color, shape, 3D, shading, and interaction can be used to this end. In this invited talk an overview is given of work on graph visualization of the visualization group of Eindhoven University of Technology, The Netherlands. A wide variety of examples is shown and discussed using demos and animations.

[1]  Karsten Klein,et al.  Shrinking the Search Space for Clustered Planarity , 2012, Graph Drawing.

[2]  Yifan Hu,et al.  A Maxent-Stress Model for Graph Layout , 2012, IEEE Transactions on Visualization and Computer Graphics.

[3]  Giuseppe Di Battista,et al.  Clustered planarity , 2005, Symposium on Computational Geometry.

[4]  Ioannis G. Tollis,et al.  Algorithms for Visibility Representations of Planar Graphs , 1986, STACS.

[5]  Michael Jünger,et al.  Journal of Graph Algorithms and Applications 2-layer Straightline Crossing Minimization: Performance of Exact and Heuristic Algorithms , 2022 .

[6]  F. J. Newbery Edge concentration: a method for clustering directed graphs , 1989 .

[7]  Jean-Daniel Fekete,et al.  NodeTrix: a Hybrid Visualization of Social Networks , 2007, IEEE Transactions on Visualization and Computer Graphics.

[8]  W. Torgerson Multidimensional scaling: I. Theory and method , 1952 .

[9]  David Harel,et al.  Graph Drawing by High-Dimensional Embedding , 2002, J. Graph Algorithms Appl..

[10]  Robert F. Cohen,et al.  Planarity for Clustered Graphs , 1995, ESA.

[11]  Kozo Sugiyama,et al.  Layout Adjustment and the Mental Map , 1995, J. Vis. Lang. Comput..

[12]  Chandler Stolp,et al.  The Visual Display of Quantitative Information , 1983 .

[13]  Falk Schreiber,et al.  Editing, validating and translating of SBGN maps , 2010, Bioinform..

[14]  Michael Jünger,et al.  Large-Graph Layout Algorithms at Work: An Experimental Study , 2007, J. Graph Algorithms Appl..

[15]  Peter Eades,et al.  Edge crossings in drawings of bipartite graphs , 1994, Algorithmica.

[16]  Tim Dwyer,et al.  Scalable, Versatile and Simple Constrained Graph Layout , 2009, Comput. Graph. Forum.

[17]  David Harel,et al.  A multi-scale algorithm for drawing graphs nicely , 2001, Discret. Appl. Math..

[18]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[19]  W. T. Tutte Convex Representations of Graphs , 1960 .

[20]  Mitsuhiko Toda,et al.  Methods for Visual Understanding of Hierarchical System Structures , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[21]  Peter Eades,et al.  A Heuristic for Graph Drawing , 1984 .

[22]  Kurt Mehlhorn,et al.  On the embedding phase of the Hopcroft and Tarjan planarity testing algorithm , 2005, Algorithmica.

[23]  Horst D. Simon,et al.  Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems , 1994, Concurr. Pract. Exp..

[24]  Ben Shneiderman,et al.  Tree-maps: a space-filling approach to the visualization of hierarchical information structures , 1991, Proceeding Visualization '91.

[25]  Jure Leskovec,et al.  Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters , 2008, Internet Math..

[26]  Michael Burch,et al.  Evaluating Partially Drawn Links for Directed Graph Edges , 2011, GD.

[27]  Edward M. Reingold,et al.  Tidier Drawings of Trees , 1981, IEEE Transactions on Software Engineering.

[28]  Peter Eades,et al.  On the faithfulness of graph visualizations , 2013, PacificVis.

[29]  Ioannis G. Tollis,et al.  The Three-Phase Method: A Unified Approach to Orthogonal Graph Drawing , 1997, Graph Drawing.

[30]  Peter Eades,et al.  A Heuristics for Graph Drawing , 1984 .

[31]  Karsten Klein,et al.  An Experimental Evaluation of Multilevel Layout Methods , 2010, GD.

[32]  Michael Jünger,et al.  Drawing Large Graphs with a Potential-Field-Based Multilevel Algorithm , 2004, GD.

[33]  Martin Pergel,et al.  Clustered Planarity: Small Clusters in Cycles and Eulerian Graphs , 2009, J. Graph Algorithms Appl..

[34]  W. T. Tutte How to Draw a Graph , 1963 .

[35]  Giuseppe Liotta,et al.  Right angle crossing graphs and 1-planarity , 2013, Discret. Appl. Math..

[36]  Emden R. Gansner,et al.  A Technique for Drawing Directed Graphs , 1993, IEEE Trans. Software Eng..

[37]  Tao Lin,et al.  Integration of Declarative and Algorithmic Approaches for Layout Creation , 1994, Graph Drawing.

[38]  Michael T. Goodrich,et al.  A multi-dimensional approach to force-directed layouts of large graphs , 2000, Comput. Geom..

[39]  Sarala M. Wimalaratne,et al.  The Systems Biology Graphical Notation , 2009, Nature Biotechnology.

[40]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[41]  Vipin Kumar,et al.  Analysis of Multilevel Graph Partitioning , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[42]  Robert F. Cohen,et al.  Validating Graph Drawing Aesthetics , 1995, GD.

[43]  Wei-Kuan Shih,et al.  A New Planarity Test , 1999, Theor. Comput. Sci..

[44]  Peter Eades,et al.  FADE: Graph Drawing, Clustering, and Visual Abstraction , 2000, GD.

[45]  Yehuda Koren,et al.  Graph Drawing by Stress Majorization , 2004, GD.

[46]  Ulrik Brandes,et al.  Fast and Simple Horizontal Coordinate Assignment , 2001, GD.

[47]  Helen C. Purchase,et al.  Metrics for Graph Drawing Aesthetics , 2002, J. Vis. Lang. Comput..

[48]  Michael Jünger,et al.  A new approach for visualizing UML class diagrams , 2003, SoftVis '03.

[49]  Walter Didimo,et al.  Drawing Graphs with Right Angle Crossings , 2009, WADS.

[50]  David Harel,et al.  ACE: a fast multiscale eigenvectors computation for drawing huge graphs , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[51]  Ramana Rao,et al.  A focus+context technique based on hyperbolic geometry for visualizing large hierarchies , 1995, CHI '95.

[52]  Jarke J. van Wijk,et al.  Force‐Directed Edge Bundling for Graph Visualization , 2009, Comput. Graph. Forum.

[53]  Kim Marriott,et al.  A generic algorithm for layout of biological networks , 2009, BMC Bioinformatics.

[54]  Robert F. Cohen,et al.  Online Animated Graph Drawing for Web Navigation , 1997, GD.

[55]  Carlo Batini,et al.  Automatic graph drawing and readability of diagrams , 1988, IEEE Trans. Syst. Man Cybern..

[56]  Michael Garland,et al.  On the Visualization of Social and other Scale-Free Networks , 2008, IEEE Transactions on Visualization and Computer Graphics.

[57]  Michael Jünger,et al.  Maximum planar subgraphs and nice embeddings: Practical layout tools , 1996, Algorithmica.

[58]  Christos Faloutsos,et al.  oddball: Spotting Anomalies in Weighted Graphs , 2010, PAKDD.

[59]  Carlo Batini,et al.  A layout algorithm for data flow diagrams , 1986, IEEE Transactions on Software Engineering.

[60]  Satoru Kawai,et al.  An Algorithm for Drawing General Undirected Graphs , 1989, Inf. Process. Lett..

[61]  Arjan Kuijper,et al.  Visual Analysis of Large Graphs: State‐of‐the‐Art and Future Research Challenges , 2011, Eurographics.

[62]  Michael Kaufmann,et al.  Drawing High Degree Graphs with Low Bend Numbers , 1995, GD.

[63]  Yifan Hu,et al.  GMap: Visualizing graphs and clusters as maps , 2010, 2010 IEEE Pacific Visualization Symposium (PacificVis).

[64]  Yifan Hu,et al.  Drawing Large Graphs by Low‐Rank Stress Majorization , 2012, Comput. Graph. Forum.

[65]  Chris Walshaw,et al.  Journal of Graph Algorithms and Applications a Multilevel Algorithm for Force-directed Graph-drawing , 2022 .

[66]  Ulrik Brandes,et al.  Eigensolver Methods for Progressive Multidimensional Scaling of Large Data , 2006, GD.

[67]  Csaba D. Tóth,et al.  Graphs that admit right angle crossing drawings , 2010, Comput. Geom..

[68]  Matthias Klapperstück,et al.  VANTED v2: a framework for systems biology applications , 2012, BMC Systems Biology.

[69]  Xuemin Lin,et al.  A Fast and Effective Heuristic for the Feedback Arc Set Problem , 1993, Inf. Process. Lett..

[70]  Martin Wattenberg,et al.  Visual exploration of multivariate graphs , 2006, CHI.

[71]  Roberto Tamassia,et al.  On Embedding a Graph in the Grid with the Minimum Number of Bends , 1987, SIAM J. Comput..

[72]  Hiroshi Nagamochi,et al.  Drawing Clustered Graphs on an Orthogonal Grid , 1999, J. Graph Algorithms Appl..

[73]  Kenneth M. Hall An r-Dimensional Quadratic Placement Algorithm , 1970 .

[74]  Michael Jünger,et al.  The Polyhedral Approach to the Maximum Planar Subgraph Problem: New Chances for Related Problems , 1994, Graph Drawing.

[75]  Philippe Castagliola,et al.  On the Readability of Graphs Using Node-Link and Matrix-Based Representations: A Controlled Experiment and Statistical Analysis , 2005, Inf. Vis..

[76]  Rio Yokota,et al.  Scalable Force Directed Graph Layout Algorithms Using Fast Multipole Methods , 2012, 2012 11th International Symposium on Parallel and Distributed Computing.

[77]  Michael Jünger,et al.  A note on computing a maximal planar subgraph using PQ-trees , 1998, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[78]  Michael Jünger,et al.  Drawing rooted trees in linear time , 2006 .

[79]  Michael Jünger,et al.  Advances in C-Planarity Testing of Clustered Graphs , 2002, Graph Drawing.

[80]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[81]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[82]  Marek Chrobak,et al.  Planar Orientations with Low Out-degree and Compaction of Adjacency Matrices , 1991, Theor. Comput. Sci..

[83]  Alexander Wolff,et al.  Progress on Partial Edge Drawings , 2012, Graph Drawing.

[84]  Martin Wattenberg,et al.  Centrality Based Visualization of Small World Graphs , 2008, Comput. Graph. Forum.

[85]  C. Kuratowski Sur le problème des courbes gauches en Topologie , 1930 .

[86]  Colin Ware,et al.  Cognitive Measurements of Graph Aesthetics , 2002, Inf. Vis..

[87]  Marc Olano,et al.  Glimmer: Multilevel MDS on the GPU , 2009, IEEE Transactions on Visualization and Computer Graphics.

[88]  Elias Dahlhaus,et al.  A Linear Time Algorithm to Recognize Clustered Graphs and Its Parallelization , 1998, LATIN.