Visualization and Analysis of MicroRNAs within KEGG Pathways using VANESA

Abstract MicroRNAs (miRNAs) are small RNA molecules which are known to take part in post-transcriptional regulation of gene expression. Here, VANESA, an existing platform for reconstructing, visualizing, and analysis of large biological networks, has been further expanded to include all experimentally validated human miRNAs available within miRBase, TarBase and miRTarBase. This is done by integrating a custom hybrid miRNA database to DAWIS-M.D., VANESA’s main data source, enabling the visualization and analysis of miRNAs within large biological pathways such as those found within the Kyoto Encyclopedia of Genes and Genomes (KEGG). Interestingly, 99.15 % of human KEGG pathways either contain genes which are targeted by miRNAs or harbor them. This is mainly due to the high number of interaction partners that each miRNA could have (e.g.: hsa-miR-335-5p targets 2544 genes and 71 miRNAs target NUFIP2). We demonstrate the usability of our system by analyzing the measles virus KEGG pathway as a proof-of-principle model and further highlight the importance of integrating miRNAs (both experimentally validated and predicted) into biological networks for the elucidation of novel miRNA-mRNA interactions of biological importance.

[1]  Nectarios Koziris,et al.  TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support , 2011, Nucleic Acids Res..

[2]  Chi-Ying F. Huang,et al.  miRTarBase: a database curates experimentally validated microRNA–target interactions , 2010, Nucleic Acids Res..

[3]  Yvonne Tay,et al.  MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation , 2008, Nature.

[4]  Fabian J Theis,et al.  miTALOS: analyzing the tissue-specific regulation of signaling pathways by human and mouse microRNAs. , 2011, RNA.

[5]  Chris T. A. Evelo,et al.  CyTargetLinker: A Cytoscape App to Integrate Regulatory Interactions in Network Analysis , 2013, PloS one.

[6]  M. Kanehisa,et al.  Using the KEGG Database Resource , 2005, Current protocols in bioinformatics.

[7]  Susumu Goto,et al.  KEGG for integration and interpretation of large-scale molecular data sets , 2011, Nucleic Acids Res..

[8]  Ralf Hofestädt,et al.  BioDWH: A Data Warehouse Kit for Life Science Data Integration , 2008, J. Integr. Bioinform..

[9]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[10]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[11]  R. Place,et al.  MicroRNA-373 induces expression of genes with complementary promoter sequences , 2008, Proceedings of the National Academy of Sciences.

[12]  K. Kohn,et al.  CellMiner: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. , 2012, Cancer research.

[13]  Artemis G. Hatzigeorgiou,et al.  DIANA-miRPath v3.0: deciphering microRNA function with experimental support , 2015, Nucleic Acids Res..

[14]  Bernhard Mlecnik,et al.  CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data , 2013, Bioinform..

[15]  Alfredo Benso,et al.  CyTRANSFINDER: a Cytoscape 3.3 plugin for three-component (TF, gene, miRNA) signal transduction pathway construction , 2016, BMC Bioinformatics.

[16]  Ralf Hofestädt,et al.  VANESA - A Software Application for the Visualization and Analysis of Networks in System Biology Applications , 2014, J. Integr. Bioinform..

[17]  Fabian J Theis,et al.  miTALOS v2: Analyzing Tissue Specific microRNA Function , 2016, PloS one.

[18]  U. A. Ørom,et al.  MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. , 2008, Molecular cell.

[19]  Bing Hu,et al.  MicroRNAs involved in the mitogen-activated protein kinase cascades pathway during glucose-induced cardiomyocyte hypertrophy. , 2011, The American journal of pathology.

[20]  Kenneth H. Buetow,et al.  PID: the Pathway Interaction Database , 2008, Nucleic Acids Res..

[21]  Xianghuo He,et al.  Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region , 2010, Oncogene.

[22]  Q Zou,et al.  Benchmark comparison of ab initio microRNA identification methods and software. , 2012, Genetics and molecular research : GMR.

[23]  Molly Megraw,et al.  miRGen: a database for the study of animal microRNA genomic organization and function , 2006, Nucleic Acids Res..

[24]  Thorsten Meinl,et al.  KNIME: The Konstanz Information Miner , 2007, GfKl.

[25]  Hsien-Da Huang,et al.  miRTar: an integrated system for identifying miRNA-target interactions in human , 2011, BMC Bioinformatics.

[26]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[27]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[28]  Ralf Hofestädt,et al.  DAWIS-M.D. 2.0 - A Data Warehouse Information System for Metabolic Data , 2011 .

[29]  Ralf Hofestädt,et al.  BioDWH: A Data Warehouse Kit for Life Science Data Integration , 2008 .

[30]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[31]  Ana Lúcia Leitão,et al.  Non-coding RNAs and Inter-kingdom Communication , 2016, Springer International Publishing.

[32]  M. Kanehisa,et al.  Using the KEGG Database Resource , 2005, Current protocols in bioinformatics.

[33]  J. Steitz,et al.  Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation , 2007, Science.

[34]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[35]  Antje Chang,et al.  BRENDA, the enzyme information system in 2011 , 2010, Nucleic Acids Res..

[36]  Ana Kozomara,et al.  miRBase: integrating microRNA annotation and deep-sequencing data , 2010, Nucleic Acids Res..

[37]  Nectarios Koziris,et al.  DIANA-microT web server: elucidating microRNA functions through target prediction , 2009, Nucleic Acids Res..