Ecological behavior of Quercus suber and Quercus ilex inferred by topographic wetness index (TWI)

[1]  Doadi Antonio Brena,et al.  Inventario florestal nacional , 2013 .

[2]  Nicholas C. Coops,et al.  Modelling the ecosystem indicators of British Columbia using Earth observation data and terrain indices , 2012 .

[3]  Andrea Petroselli,et al.  The Flat-Area Issue in Digital Elevation Models and Its Consequences for Rainfall-Runoff Modeling , 2012 .

[4]  I. Fleck,et al.  Stomatal patchiness in the Mediterranean holm oak (Quercus ilex L.) under water stress in the nursery and in the forest. , 2012, Tree physiology.

[5]  P. Dreyfus,et al.  Instability of climate signal in tree-ring width in Mediterranean mountains: a multi-species analysis , 2012, Trees.

[6]  A. Petroselli LIDAR Data and Hydrological Applications at the Basin Scale , 2012 .

[7]  S. Grimaldi,et al.  A parsimonious geomorphological unit hydrograph for rainfall–runoff modelling in small ungauged basins , 2012 .

[8]  D. Cairns,et al.  Relationships between Arctic shrub dynamics and topographically derived hydrologic characteristics , 2011 .

[9]  N. McDowell,et al.  The interdependence of mechanisms underlying climate-driven vegetation mortality. , 2011, Trends in ecology & evolution.

[10]  T. Jarmer,et al.  Linking spatial patterns of soil organic carbon to topography — A case study from south-eastern Spain , 2011 .

[11]  Simon S. Woo,et al.  Can net photosynthesis and water relations provide a clue on the forest decline of Quercus suber in North Tunisia , 2011 .

[12]  Neil S. Arnold,et al.  A new approach for dealing with depressions in digital elevation models when calculating flow accumulation values , 2010 .

[13]  Justin M Cohen,et al.  Local topographic wetness indices predict household malaria risk better than land-use and land-cover in the western Kenya highlands , 2010, Malaria Journal.

[14]  M. Cristina Rulli,et al.  A physically based watershed partitioning method , 2010 .

[15]  Martin Kopecký,et al.  Using topographic wetness index in vegetation ecology: does the algorithm matter? , 2010 .

[16]  Andrea Petroselli,et al.  Flow time estimation with spatially variable hillslope velocity in ungauged basins , 2010 .

[17]  G. Piovesan,et al.  Irrigation regime as a key factor to improve growth performance of Quercus suber L. , 2010 .

[18]  G. Moreno,et al.  Large-Scale Patterns of Quercus ilex, Quercus suber, and Quercus pyrenaica Regeneration in Central-Western Spain , 2010, Ecosystems.

[19]  M. Santini,et al.  Pre-processing algorithms and landslide modelling on remotely sensed DEMs , 2009 .

[20]  Guohe Huang,et al.  Building channel networks for flat regions in digital elevation models , 2009 .

[21]  João Santos Pereira,et al.  Cork Oak Woodlands on the Edge , 2009 .

[22]  F. J. Barnes,et al.  Tree die-off in response to global change-type drought: mortality insights from a decade of plant water potential measurements. , 2009 .

[23]  T. Marañón,et al.  Effects of waterlogging on seed germination of three Mediterranean oak species: Ecological implications , 2009 .

[24]  J. Evans,et al.  Gradient modeling of conifer species using random forests , 2009, Landscape Ecology.

[25]  F. Biondi,et al.  Population ecology of yew (Taxus baccata L.) in the Central Apennines: spatial patterns and their relevance for conservation strategies , 2009, Plant Ecology.

[26]  F. Vessella,et al.  Multiple genome relationships and a complex biogeographic history in the eastern range of Quercus suber L. (Fagaceae) implied by nuclear and chloroplast DNA variation , 2009 .

[27]  E. Torres Cork Oak Woodlands on the Edge: Ecology, Adaptive Management, and Restoration , 2008 .

[28]  Monia Santini,et al.  Hydrogeomorphic properties of simulated drainage patterns using digital elevation models: the flat area issue / Propriétés hydro-géomorphologiques de réseaux de drainage simulés à partir de modèles numériques de terrain: la question des zones planes , 2008 .

[29]  G. Rossi,et al.  Toward improved species niche modelling: Arnica montana in the Alps as a case study , 2008 .

[30]  S. Gruber,et al.  Land-Surface parameters and objects in hydrology , 2008 .

[31]  S. Dobrowski,et al.  Mapping mountain vegetation using species distribution modeling, image-based texture analysis, and object-based classification , 2008 .

[32]  Ângelo Carvalho Oliveira,et al.  The relationship between cork oak growth patterns and soil, slope and drainage in a cork oak woodland in Southern Portugal , 2008 .

[33]  Maaike Y. Bader,et al.  A topography‐based model of forest cover at the alpine tree line in the tropical Andes , 2008 .

[34]  M. Díaz,et al.  Facilitation of Quercus ilex recruitment by shrubs in Mediterranean open woodlands , 2008 .

[35]  H. Freitas,et al.  Intraspecific competition and water use efficiency in Quercus suber: evidence of an optimum tree density? , 2008, Trees.

[36]  Paolo Cherubini,et al.  On the 'Divergence Problem' in Northern Forests: A review of the tree-ring evidence and possible causes , 2008 .

[37]  R. Bras,et al.  A physically-based method for removing pits in digital elevation models , 2007 .

[38]  M. Vaz,et al.  Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. , 2007, Tree physiology.

[39]  I. Aranda,et al.  Water-use efficiency in cork oak (Quercus suber) is modified by the interaction of water and light availabilities. , 2007, Tree physiology.

[40]  John P. Wilson,et al.  Comparison of the performance of flow‐routing algorithms used in GIS‐based hydrologic analysis , 2007 .

[41]  Ü. Niinemets,et al.  Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs , 2006 .

[42]  E. Vivoni,et al.  Investigating a floodplain scaling relation using a hydrogeomorphic delineation method , 2006 .

[43]  J. Pausas,et al.  Oak regeneration in heterogeneous landscapes: The case of fragmented Quercus suber forests in the eastern Iberian Peninsula , 2006 .

[44]  Renzo Rosso,et al.  A physically based model for the hydrologic control on shallow landsliding , 2006 .

[45]  I. Trinajstić Hrast plutnjak (Quecus suber L.) u dendroflori Hrvatske , 2006 .

[46]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[47]  J. Lindsay,et al.  Removal of artifact depressions from digital elevation models: towards a minimum impact approach , 2005 .

[48]  Robert I. McDonald,et al.  Modeling Landscape Vegetation Pattern in Response to Historic Land-use: A Hypothesis-driven Approach for the North Carolina Piedmont, USA , 2005, Landscape Ecology.

[49]  J. Seibert,et al.  On the calculation of the topographic wetness index: evaluation of different methods based on field observations , 2005 .

[50]  I. Aranda,et al.  Low temperature during winter elicits differential responses among populations of the Mediterranean evergreen cork oak (Quercus suber). , 2005, Tree physiology.

[51]  Frank Kenny,et al.  A methodology for aligning raster flow direction data with photogrammetrically mapped hydrology , 2005, Comput. Geosci..

[52]  Salvatore Grimaldi,et al.  Preserving first and second moments of the slope area relationship during the interpolation of digital elevation models , 2005 .

[53]  M. Díaz,et al.  Regeneration of a Mediterranean oak: A whole-cycle approach , 2005 .

[54]  Shawn W. Laffan,et al.  Effect of error in the DEM on environmental variables for predictive vegetation modelling , 2004 .

[55]  Salvatore Grimaldi,et al.  Sensitivity of a physically based method for terrain interpolation to initial conditions and its conditioning on stream location , 2004 .

[56]  M. Austin Spatial prediction of species distribution: an interface between ecological theory and statistical modelling , 2002 .

[57]  J. Camarero,et al.  Functional groups in Quercus species derived from the analysis of pressure–volume curves , 2002, Trees.

[58]  Peter Caccetta,et al.  Vegetation distribution in relation to topographically driven processes in southwestern Australia , 2002 .

[59]  Janet Franklin,et al.  Enhancing a regional vegetation map with predictive models of dominant plant species in chaparral , 2002 .

[60]  L. Toumi,et al.  Allozyme characterisation of four Mediterranean evergreen oak species. , 2001, Biochemical systematics and ecology.

[61]  David M. Cairns,et al.  A comparison of methods for predicting vegetation type , 2001, Plant Ecology.

[62]  A. Testi,et al.  Edaphic characteristics ofQuercus suber woods in Latium , 1997 .

[63]  M. E. Dale,et al.  A Gis-derived integrated moisture index to predict forest composition and productivity of Ohio forests (U.S.A.) , 1997, Landscape Ecology.

[64]  A. Testi,et al.  Contribution to the syntaxonomic knowledge of Quercus suber woodlands of Latium , 1994 .

[65]  Gary A. Peterson,et al.  Soil Attribute Prediction Using Terrain Analysis , 1993 .

[66]  M. Lillis,et al.  Comparative phenology and growth in different species of the Mediterranean maquis of central Italy , 1992, Vegetatio.

[67]  T. G. Freeman,et al.  Calculating catchment area with divergent flow based on a regular grid , 1991 .

[68]  M. Gullo,et al.  Sclerophylly and plant water relations in three Mediterranean Quercus species. , 1990 .

[69]  H. Ellenberg,et al.  Vegetation Ecology of Central Europe. , 1989 .

[70]  Emanuel Palamarev,et al.  Paleobotanical evidences of the Tertiary history and origin of the Mediterranean sclerophyll dendroflora , 1989, Plant Systematics and Evolution.

[71]  K. Beven,et al.  A physically based, variable contributing area model of basin hydrology , 1979 .

[72]  P. Daget Le bioclimat mediterraneen: Caracteres generaux, modes de caracterisation , 1977, Vegetatio.

[73]  O. Phillips,et al.  Detecting trends in tree growth: not so simple. , 2013, Trends in plant science.

[74]  Darrin L. Rubino,et al.  Dendrochronological analysis of white oak growth patterns across a topographic moisture gradient in southern Ohio , 2013 .

[75]  T. Hengl,et al.  Geomorphometry: Concepts, software, applications , 2009 .

[76]  L. Gil,et al.  EUFORGEN Technical Guidelines for genetic conservation and use for cork oak (Quercus suber) , 2008 .

[77]  V. Cimino Drought-driven growth reduction in old beech ( Fagus sylvatica L . ) forests of the central Apennines , Italy , 2008 .

[78]  F. S. Francés,et al.  Influence of the soil water holding capacity on the potential distribution of forest species. A case study: the potential distribution of cork oak (Quercus suber L.) in central-western Spain , 2008, European Journal of Forest Research.

[79]  J. Pospíšilová,et al.  Stomatal patchiness , 2008, Biologia Plantarum.

[80]  Helena Pereira,et al.  Cork : biology, production and uses , 2007 .

[81]  R. Peckham,et al.  Digital Terrain Modelling , 2007 .

[82]  Panagos Panagiotis,et al.  The European Soil Database , 2006 .

[83]  L. Vilar,et al.  Nutrient content and seasonal fluctuations in the leaf component of coark-oak (Quercus suber L.) litterfall , 2004, Vegetatio.

[84]  F. Rodà,et al.  Ecology of Mediterranean Evergreen Oak Forests , 1999, Ecological Studies.

[85]  J. Timbal,et al.  An overview of ecology and silviculture of indigenous oaks in France. , 1996 .

[86]  S. Amigues Le témoignage de l'Antiquité classique sur des espèces en régression , 1991 .

[87]  I. Moore,et al.  Digital terrain modelling: A review of hydrological, geomorphological, and biological applications , 1991 .