Effect of Carbon Matrix Dimensions on the Electrochemical Properties of Na3V2(PO4)3 Nanograins for High‐Performance Symmetric Sodium‐Ion Batteries

Na3V2(PO4)3 nanograins dispersed in different carbon matrices are rationally synthesized and systematically characterized. The acetylene carbon matrix provides the best conductive networks for electrons and sodium ions, which endows Na3V2(PO4)3 stable cyclability and high rate performance. The Na3V2 (PO4)3 -based symmetric sodium-ion batteries show outstanding electrochemical performance, which is promising for large-scale and low-cost energy storage applications.

[1]  Zheng Jia,et al.  Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. , 2013, Nano letters.

[2]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[3]  Y. Gogotsi,et al.  True Performance Metrics in Electrochemical Energy Storage , 2011, Science.

[4]  Chunsheng Wang,et al.  Tin-coated viral nanoforests as sodium-ion battery anodes. , 2013, ACS nano.

[5]  Soo Yeon Lim,et al.  Electrochemical and Thermal Properties of NASICON Structured Na3V2(PO4)3 as a Sodium Rechargeable Battery Cathode: A Combined Experimental and Theoretical Study , 2012 .

[6]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[7]  Nam-Soon Choi,et al.  Charge carriers in rechargeable batteries: Na ions vs. Li ions , 2013 .

[8]  J. Gopalakrishnan,et al.  Vanadium phosphate (V2(PO4)3): a novel NASICO N-type vanadium phosphate synthesized by oxidative deintercalation of sodium from sodium vanadium phosphate (Na3V2(PO4)3) , 1992 .

[9]  J. Tarascon,et al.  Low-potential sodium insertion in a NASICON-type structure through the Ti(III)/Ti(II) redox couple. , 2013, Journal of the American Chemical Society.

[10]  Haosheng Zhou New energy storage devices for post lithium-ion batteries , 2013 .

[11]  Alok Kumar Rai,et al.  High rate performance of a Na3V2(PO4)3/C cathode prepared by pyro-synthesis for sodium-ion batteries , 2012 .

[12]  C. Ponce de León,et al.  Redox flow cells for energy conversion , 2006 .

[13]  Philipp Adelhelm,et al.  Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies , 2011 .

[14]  Haoshen Zhou,et al.  Aromatic porous-honeycomb electrodes for a sodium-organic energy storage device , 2013, Nature Communications.

[15]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[16]  Jun Liu,et al.  Addressing the Grand Challenges in Energy Storage , 2013 .

[17]  M. Armand,et al.  Building better batteries , 2008, Nature.

[18]  Hao Gong,et al.  Na2Ti6O13: a potential anode for grid-storage sodium-ion batteries. , 2013, Chemical communications.

[19]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[20]  Zhenguo Yang,et al.  Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life , 2011, Advanced materials.

[21]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[22]  Y. S. Lee,et al.  Synthesis and optimization of NASICON-type Li3V2(PO4)3 by adipic acid-mediated solid-state approach , 2013, Journal of Applied Electrochemistry.

[23]  Jean-Marie Tarascon,et al.  Towards systems materials engineering. , 2012, Nature materials.

[24]  Palani Balaya,et al.  The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries , 2013 .

[25]  K. Kang,et al.  A new high-energy cathode for a Na-ion battery with ultrahigh stability. , 2013, Journal of the American Chemical Society.

[26]  Vincenzo Balzani,et al.  The future of energy supply: Challenges and opportunities. , 2007, Angewandte Chemie.

[27]  J. Liang,et al.  Functional Materials for Rechargeable Batteries , 2011, Advanced materials.

[28]  John B Goodenough,et al.  A superior low-cost cathode for a Na-ion battery. , 2013, Angewandte Chemie.

[29]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[30]  Xia Lu,et al.  Sodium Storage and Transport Properties in Layered Na2Ti3O7 for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[31]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .

[32]  Y. Liu,et al.  Selenium@mesoporous carbon composite with superior lithium and sodium storage capacity. , 2013, ACS nano.

[33]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[34]  L. Nazar,et al.  Na-ion mobility in layered Na2FePO4F and olivine Na[Fe,Mn]PO4 , 2013 .

[35]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .

[36]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[37]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[38]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[39]  L. Nazar,et al.  Electrochemical property: Structure relationships in monoclinic Li(3-y)V2(PO4)3. , 2003, Journal of the American Chemical Society.

[40]  K. Du,et al.  Na3V2(PO4)3 as cathode material for hybrid lithium ion batteries , 2013 .

[41]  Seung-Don Choi,et al.  The Current Move of Lithium Ion Batteries Towards the Next Phase , 2012 .

[42]  Xufeng Zhou,et al.  New-concept Batteries Based on Aqueous Li+/Na+ Mixed-ion Electrolytes , 2013, Scientific Reports.

[43]  Yunlong Zhao,et al.  Long-life and high-rate Li3V2(PO4)3/C nanosphere cathode materials with three-dimensional continuous electron pathways. , 2013, Nanoscale.

[44]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[45]  Eiji Kobayashi,et al.  Performance of NASICON Symmetric Cell with Ionic Liquid Electrolyte , 2010 .

[46]  Christian Masquelier,et al.  Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.

[47]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[48]  Jing Zhou,et al.  Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room‐Temperature Sodium‐Ion Batteries , 2013 .

[49]  Yang-Kook Sun,et al.  Challenges facing lithium batteries and electrical double-layer capacitors. , 2012, Angewandte Chemie.

[50]  Lin Gu,et al.  Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries , 2013, Nature Communications.

[51]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[52]  Jean-Marie Tarascon,et al.  In search of an optimized electrolyte for Na-ion batteries , 2012 .

[53]  Laure Monconduit,et al.  Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism. , 2012, Journal of the American Chemical Society.

[54]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[55]  Yunlong Zhao,et al.  Nanoscroll Buffered Hybrid Nanostructural VO2 (B) Cathodes for High‐Rate and Long‐Life Lithium Storage , 2013, Advanced materials.

[56]  Seung M. Oh,et al.  An Amorphous Red Phosphorus/Carbon Composite as a Promising Anode Material for Sodium Ion Batteries , 2013, Advanced materials.

[57]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[58]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[59]  Linda F. Nazar,et al.  Na4‐αM2+α/2(P2O7)2 (2/3 ≤ α ≤ 7/8, M = Fe, Fe0.5Mn0.5, Mn): A Promising Sodium Ion Cathode for Na‐ion Batteries , 2013 .