Raman scattering study of stoichiometric Si and Ge type II clathrates

Raman-scattering spectra of the type II clathrates Cs8Na16Si136, Cs8Na16Ge136, and Si136 were studied employing different laser wavelengths. Most of the Raman-active vibrational modes of these compounds were identified. Polarization measurements were used to identify the symmetric modes. The lowest frequency Raman-active optic “rattle” mode corresponding to the vibrations of the Cs atoms inside the hexakaidecahedra is identified for both the Si and the Ge clathrate compounds. We compare the experimental data directly with theoretical calculations. These materials continue to attract attention for potential superconducting, optoelectronic, and thermoelectric applications.

[1]  D. VanDerveer,et al.  Temperature dependent structural and transport properties of the type II clathrates A8Na16E136 (A=Cs or Rb and E=Ge or Si) , 2002 .

[2]  B. Sales,et al.  Glasslike excitations in single crystalline Sr8Ga16Ge30 clathrates , 2002 .

[3]  M. Baenitz,et al.  Superconductivity in the filled cage compounds Ba6Ge25 and Ba4Na2Ge25. , 2001, Physical review letters.

[4]  Shik Shin,et al.  Electronic structure and superconducting gap of silicon clathrate Ba8Si46 studied with ultrahigh-resolution photoemission spectroscopy , 2001 .

[5]  M. Goiran,et al.  Magnetic and magnetotransport properties of GdBaCo 2 O 5 + δ : A high magnetic-field study , 2001 .

[6]  H. Metiu,et al.  Band structures and thermoelectric properties of the clathrates Ba8Ga16Ge30,Sr8Ga16Ge30,Ba8Ga16Si30, and Ba8In16Sn30 , 2001 .

[7]  B. Sales,et al.  Structural, magnetic, thermal, and transport properties of X{sub 8}Ga{sub 16}Ge{sub 30} (X=Eu,Sr,Ba) single crystals , 2001 .

[8]  G. Stucky,et al.  NMR Knight shifts and the electronic properties of Rb{sub 8}Na{sub 16}Si{sub 136} clathrate , 2001 .

[9]  O. Sankey,et al.  Theoretical study of the lattice thermal conductivity in Ge framework semiconductors. , 2001, Physical review letters.

[10]  P. McMillan,et al.  23 Na and Si 29 NMR Knight shifts in the silicon clathrate Na 16 Cs 8 Si 136 , 2000 .

[11]  B. Sales,et al.  When does a crystal conduct heat like a glass? , 2000 .

[12]  Derek L. Patton,et al.  Low-density framework form of crystalline silicon with a wide optical band gap , 2000 .

[13]  G. Nolas,et al.  Raman scattering study of Ge and Sn compounds with type-I clathrate hydrate crystal structure , 2000 .

[14]  S. Bobev,et al.  Clathrates of Group 14 with Alkali Metals: An Exploration , 2000 .

[15]  G. Long,et al.  Structural Characterization and Thermal Conductivity of Type-I Tin Clathrates , 2000 .

[16]  O. Sankey,et al.  Chemical trends of the rattling phonon modes in alloyed germanium clathrates , 2000 .

[17]  D. Rowe,et al.  Preparation and thermoelectric properties of A8IIB16IIIB30IV clathrate compounds , 2000 .

[18]  Renu Sharma,et al.  Structural properties and thermal conductivity of crystalline Ge clathrates , 2000 .

[19]  H. Fukuoka,et al.  High-pressure synthesis of a new silicon clathrate superconductor, Ba8Si46. , 2000, Inorganic chemistry.

[20]  G. Nolas,et al.  Structural disorder and thermal conductivity of the semiconducting clathrate Sr8Ga16Ge30 , 2000 .

[21]  O. Sankey,et al.  Theoretical study of two expanded phases of crystalline germanium: clathrate-I and clathrate-II , 1999 .

[22]  G. Stucky,et al.  Superconductivity in germanium clathrate Ba 8 Ga 16 Ge 30 , 1999 .

[23]  O. Sankey,et al.  THEORETICAL STUDY OF THE VIBRATIONAL MODES AND THEIR PRESSURE DEPENDENCE IN THE PURE CLATHRATE-II SILICON FRAMEWORK , 1999 .

[24]  S. Bobev,et al.  Synthesis and Characterization of Stable Stoichiometric Clathrates of Silicon and Germanium: Cs8Na16Si136 and Cs8Na16Ge136 , 1999 .

[25]  G. A. Slack,et al.  Glasslike Heat Conduction in High-Mobility Crystalline Semiconductors , 1998, cond-mat/9812387.

[26]  George S. Nolas,et al.  Semiconducting Ge clathrates: Promising candidates for thermoelectric applications , 1998 .

[27]  Yannick Guyot,et al.  Raman scattering of silicon clathrates , 1998 .

[28]  M. Menon,et al.  Structural and vibrational properties of Si clathrates in a generalized tight-binding molecular-dynamics scheme , 1997 .

[29]  J. Lu,et al.  Structural properties and vibrational modes of Si34 and Si46 clathrates , 1997 .

[30]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[31]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[32]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[33]  Adams,et al.  Wide-band-gap Si in open fourfold-coordinated clathrate structures. , 1994, Physical review. B, Condensed matter.

[34]  M. White,et al.  Origin of glassy crystalline behavior in the thermal properties of clathrate hydrates: a thermal conductivity study of tetrahydrofuran hydrate , 1988 .

[35]  G. Nolas,et al.  Thermoelectrics: Basic Principles and New Materials Developments , 2001 .