Simultaneous constraints on the growth of structure and cosmic expansion from the multipole power spectra of the SDSS DR7 LRG sample

The anisotropic galaxy clustering on large scales provides us with a unique opportunity to probe into the gravity theory through the redshift-space distortions (RSDs) and the Alcock-Paczynski effect. Using the multipole power spectra up to hexadecapole (ell=4), of the Luminous Red Galaxy (LRG) sample in the data release 7 (DR7) of the Sloan Digital Sky Survey II (SDSS-II), we obtain simultaneous constraints on the linear growth rate f, angular diameter distance D_A, and Hubble parameter H at redshift z = 0.3. For this purpose, we first extensively examine the validity of a theoretical model for the non-linear RSDs using mock subhalo catalogues from N-body simulations, which are constructed to match with the observed multipole power spectra. We show that the input cosmological parameters of the simulations can be recovered well within the error bars by comparing the multipole power spectra of our theoretical model and those of the mock subhalo catalogues. We also carefully examine systematic uncertainties in our analysis by testing the dependence on prior assumption of the theoretical model and the range of wavenumbers to be used in the fitting. These investigations validate that the theoretical model can be safely applied to the real data. Thus, our results from the SDSS DR7 LRG sample are robust including systematics of theoretical modeling; f(z = 0.3) sigma_8(z = 0.3) =0.49+-0.08(stat.)+-0.04(sys.), D_A (z = 0.3) =968+-42(stat.)+-17(sys.)[Mpc], H (z = 0.3) =81.7+-5.0(stat.)+-3.7(sys.)[km/s/Mpc]. We believe that our method to constrain the cosmological parameters using subhaloes catalogues will be useful for more refined samples like CMASS and LOWZ catalogues in the Baryon Oscillation Spectroscopic Survey in SDSS-III.

[1]  Kazuhiro Yamamoto,et al.  Impacts of satellite galaxies on the redshift-space distortions , 2013, 1303.3380.

[2]  Takahiro Sato,et al.  Window Effect in the Power Spectrum Analysis of a Galaxy Redshift Survey , 2013, 1308.3551.

[3]  R. Nichol,et al.  Euclid Definition Study Report , 2011, 1110.3193.

[4]  V. Narayanan,et al.  Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.

[5]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z = 0.57 from anisotropic clustering , 2012, 1203.6641.

[6]  Ravi Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[7]  Measuring the cosmological constant with redshift surveys , 1996, astro-ph/9605017.

[8]  F. Bernardeau,et al.  Precision modeling of redshift-space distortions from a multipoint propagator expansion , 2013, 1301.3624.

[9]  N. Yoshida,et al.  SIMULATIONS OF BARYON ACOUSTIC OSCILLATIONS. II. COVARIANCE MATRIX OF THE MATTER POWER SPECTRUM , 2009, 0902.0371.

[10]  Princeton,et al.  Where are the Luminous Red Galaxies (LRGs)? Using correlation measurements and lensing to relate LRGs to dark matter haloes , 2012, 1211.1009.

[11]  S. Deustua,et al.  THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE , 2011, 1105.3470.

[12]  M. White,et al.  Evidence for Merging or Disruption of Red Galaxies from the Evolution of Their Clustering , 2006, astro-ph/0611901.

[13]  R. Wechsler,et al.  Modeling Luminosity-dependent Galaxy Clustering through Cosmic Time , 2005, astro-ph/0512234.

[14]  Y. Suto,et al.  Two-Point Correlation Function of High-Redshift Objects: An Explicit Formulation on a Light-Cone Hypersurface , 1999, astro-ph/9812486.

[15]  Takahiro Sato,et al.  Deconvolution of Window Effect in Galaxy Power Spectrum Analysis , 2010, 1010.0289.

[16]  Adam G. Riess,et al.  Observational probes of cosmic acceleration , 2012, 1201.2434.

[17]  Alexander S. Szalay,et al.  Measuring the Baryon Acoustic Oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey , 2007 .

[18]  K. Koyama,et al.  Beyond consistency test of gravity with redshift-space distortions at quasilinear scales , 2013, 1309.6783.

[19]  A. Taruya,et al.  Baryon Acoustic Oscillations in 2D II: Redshift-space halo clustering in N-body simulations , 2011, 1106.4562.

[20]  Cameron K. McBride,et al.  Measuring DA and H at z = 0.35 from the SDSS DR7 LRGs using baryon acoustic oscillations , 2012, 1206.6732.

[21]  D. A. García-Hernández,et al.  THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.

[22]  Fourier analysis of redshift-space distortions and the determination of Ω , 1993, astro-ph/9308003.

[23]  Princeton,et al.  Understanding the nature of luminous red galaxies (LRGs): connecting LRGs to central and satellite subhaloes , 2012, 1211.7077.

[24]  N. Padmanabhan,et al.  Constraining anisotropic baryon oscillations , 2008, 0804.0799.

[25]  B. Jain,et al.  Cosmological Tests of Gravity , 2010, 1004.3294.

[26]  S. Brough,et al.  The WiggleZ Dark Energy Survey: small-scale clustering of Lyman-break galaxies at z < 1 , 2009, 0901.2587.

[27]  T. Narikawa,et al.  Constraint on the cosmological f(R) model from the multipole power spectrum of the SDSS luminous red galaxy sample and prospects for a future redshift survey , 2010, 1004.3231.

[28]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[29]  N. Yoshida,et al.  NON-GAUSSIAN ERROR CONTRIBUTION TO LIKELIHOOD ANALYSIS OF THE MATTER POWER SPECTRUM , 2009, 0912.1381.

[30]  Takahiro Sato,et al.  Testing General Relativity with the Multipole Spectra of the SDSS Luminous Red Galaxies , 2008, 0805.4789.

[31]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[32]  M. Crocce,et al.  Transients from initial conditions in cosmological simulations , 2006, astro-ph/0606505.

[33]  Technology,et al.  On the systematic errors of cosmological-scale gravity tests using redshift-space distortion: non-linear effects and the halo bias , 2013, 1308.6087.

[34]  Matthew Colless,et al.  The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.

[35]  T. Nishimichi,et al.  Combining perturbation theories with halo models , 2010, 1009.0597.

[36]  J. Peacock,et al.  Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.

[37]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[38]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[39]  T. Matsubara,et al.  Cosmological Redshift Distortion of Correlation Functions as a Probe of the Density Parameter and the Cosmological Constant , 1996, astro-ph/9604142.

[40]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[41]  S. Saito,et al.  Forecasting the Cosmological Constraints with Anisotropic Baryon Acoustic Oscillations from Multipole Expansion , 2011, 1101.4723.

[42]  Ipmu,et al.  Using galaxy–galaxy weak lensing measurements to correct the finger of God , 2011, 1106.1640.

[43]  B. Reid,et al.  CONSTRAINING THE LUMINOUS RED GALAXY HALO OCCUPATION DISTRIBUTION USING COUNTS-IN-CYLINDERS , 2008, 0809.4505.

[44]  B. Reid,et al.  An analytic model for redshift-space distortions , 2013, 1306.1804.

[45]  T. Matsubara Nonlinear Perturbation Theory Integrated with Nonlocal Bias, Redshift-space Distortions, and Primordial Non-Gaussianity , 2011, 1102.4619.

[46]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[47]  Padova,et al.  Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.

[48]  Case Western Reserve University,et al.  HALO OCCUPATION DISTRIBUTION MODELING OF CLUSTERING OF LUMINOUS RED GALAXIES , 2008, 0809.1868.

[49]  E. Bertschinger On the Growth of Perturbations as a Test of Dark Energy and Gravity , 2006, astro-ph/0604485.

[50]  B. Reid,et al.  Towards an accurate model of the redshift-space clustering of haloes in the quasi-linear regime , 2011, 1105.4165.

[51]  E. Turner,et al.  A statistical method for determining the cosmological density parameter from the redshifts of a complete sample of galaxies. , 1977 .

[52]  A. Mazure,et al.  A test of the nature of cosmic acceleration using galaxy redshift distortions , 2008, Nature.

[53]  T. Matsubara Nonlinear perturbation theory with halo bias and redshift-space distortions via the Lagrangian picture , 2008, 0807.1733.

[54]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[55]  B. Reid,et al.  LUMINOUS RED GALAXY HALO DENSITY FIELD RECONSTRUCTION AND APPLICATION TO LARGE-SCALE STRUCTURE MEASUREMENTS , 2008, 0811.1025.

[56]  Alexander S. Szalay,et al.  Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.

[57]  Correlation Function in Deep Redshift Space as a Cosmological Probe , 2004, astro-ph/0408349.

[58]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[59]  B. Paczyński,et al.  An evolution free test for non-zero cosmological constant , 1979, Nature.

[60]  P. Mcdonald,et al.  Distribution function approach to redshift space distortions. Part II: N-body simulations , 2011, 1109.1609.

[61]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9 , 2011, 1104.2948.

[62]  A. Hamilton Redshift distortions and omega in IRAS surveys , 1995, astro-ph/9507022.

[63]  T. Matsubara Integrated Perturbation Theory and One-loop Power Spectra of Biased Tracers , 2013, 1304.4226.

[64]  G. Efstathiou,et al.  The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .

[65]  Yun Wang,et al.  Using multipoles of the correlation function to measure H(z), DA(z) and β(z) from Sloan Digital Sky Survey luminous red galaxies , 2012, 1205.5573.

[66]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[67]  T. Matsubara,et al.  Resumming Cosmological Perturbations via the Lagrangian Picture: One-loop Results in Real Space and in Redshift Space , 2007, 0711.2521.

[68]  B. Warner,et al.  Observations of Rapid Blue Variables–III HL TAU-76 , 1972 .

[69]  Hiroaki Nishioka,et al.  A Measurement of the Quadrupole Power Spectrum in the Clustering of the 2dF QSO Survey , 2006 .

[70]  Chia-Hsun Chuang,et al.  Measurements of H(z) and DA(z) from the two-dimensional two-point correlation function of Sloan Digital Sky Survey luminous red galaxies , 2011, 1102.2251.

[71]  Potsdam,et al.  The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.

[72]  P. Mcdonald,et al.  Distribution function approach to redshift space distortions , 2011, 1109.1888.

[73]  Judith G. Cohen,et al.  Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph , 2012, 1206.0737.

[74]  Takahiro Nishimichi,et al.  Nonlinear evolution of baryon acoustic oscillations from improved perturbation theory in real and redshift spaces , 2009, 0906.0507.

[75]  Robert C. Nichol,et al.  The three-point correlation function of luminous red galaxies in the Sloan Digital Sky Survey , 2007, astro-ph/0703340.

[76]  U. Seljak,et al.  Distribution function approach to redshift space distortions. Part III: halos and galaxies , 2012, 1206.4070.

[77]  Roman Scoccimarro Redshift-space distortions, pairwise velocities and nonlinearities , 2004 .

[78]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[79]  David Schlegel,et al.  ACOUSTIC SCALE FROM THE ANGULAR POWER SPECTRA OF SDSS-III DR8 PHOTOMETRIC LUMINOUS GALAXIES , 2012, 1201.2172.

[80]  Hee-Jong SeoDaniel J. Eisenstein Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003 .

[81]  Roman Scoccimarro Transients from initial conditions: a perturbative analysis , 1998 .

[82]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[83]  A. Oka,et al.  Simulating the anisotropic clustering of luminous red galaxies with subhaloes: a direct confrontation with observation and cosmological implications , 2013, 1310.2672.

[84]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: measuring the cosmic growth rate with the two-point galaxy correlation function , 2013, 1302.5178.

[85]  Estimating β from redshift‐space distortions in the 2dF galaxy survey , 1999, astro-ph/9905186.

[86]  N. Yoshida,et al.  The pairwise velocity probability density function in models with local primordial non-Gaussianity , 2010, 1008.0406.

[87]  Y. Jing,et al.  Modeling Nonlinear Evolution of Baryon Acoustic Oscillations: Convergence Regime of $N$-body Simulations and Analytic Models , 2008, 0810.0813.

[88]  David Schlegel,et al.  The DESI Experiment, a whitepaper for Snowmass 2013 , 2013, 1308.0847.

[89]  P. Mcdonald,et al.  Distribution function approach to redshift space distortions. Part IV: perturbation theory applied to dark matter , 2012, 1207.0839.

[90]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[91]  U. Seljak,et al.  Wide angle effects in future galaxy surveys , 2013, 1308.1093.

[92]  S. Colombi,et al.  Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.

[93]  R. Nichol,et al.  Measuring the Baryon Acoustic Oscillation scale using the SDSS and 2dFGRS , 2007, 0705.3323.

[94]  Kazuhiro Yamamoto,et al.  Observational constraints on kinetic gravity braiding from the integrated Sachs-Wolfe effect , 2011, 1110.3598.

[95]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[96]  R. Ellis,et al.  Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.

[97]  W. Percival,et al.  Interpreting large-scale redshift-space distortion measurements , 2011, 1102.1014.

[98]  Chia-Hsun Chuang,et al.  Measurement of H(z) and DA(z) from the two-dimensional power spectrum of Sloan Digital Sky Survey luminous red galaxies , 2013, 1310.6468.

[99]  S. Saito,et al.  Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory , 2010, 1006.0699.

[100]  A. Hamilton,et al.  Linear redshift distortions: A Review , 1997, astro-ph/9708102.

[101]  Edward J. Wollack,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.

[102]  M. White,et al.  Red Galaxy Growth and the Halo Occupation Distribution , 2008, 0804.2293.

[103]  Takahiro Nishimichi,et al.  Direct and fast calculation of regularized cosmological power spectrum at two-loop order , 2012 .

[104]  Yun Wang,et al.  Modelling the anisotropic two-point galaxy correlation function on small scales and single-probe measurements of H(z), DA(z) and f(z)σ8(z) from the Sloan Digital Sky Survey DR7 luminous red galaxies , 2012, 1209.0210.

[105]  Scott Croom,et al.  The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.