Simultaneous constraints on the growth of structure and cosmic expansion from the multipole power spectra of the SDSS DR7 LRG sample
暂无分享,去创建一个
Takahiro Nishimichi | Akira Oka | Kazuhiro Yamamoto | Shun Saito | Kazuhiro Yamamoto | S. Saito | A. Oka | A. Taruya | Atsushi Taruya | T. Nishimichi
[1] Kazuhiro Yamamoto,et al. Impacts of satellite galaxies on the redshift-space distortions , 2013, 1303.3380.
[2] Takahiro Sato,et al. Window Effect in the Power Spectrum Analysis of a Galaxy Redshift Survey , 2013, 1308.3551.
[3] R. Nichol,et al. Euclid Definition Study Report , 2011, 1110.3193.
[4] V. Narayanan,et al. Spectroscopic Target Selection for the Sloan Digital Sky Survey: The Luminous Red Galaxy Sample , 2001, astro-ph/0108153.
[5] R. Nichol,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z = 0.57 from anisotropic clustering , 2012, 1203.6641.
[6] Ravi Sheth,et al. Halo Models of Large Scale Structure , 2002, astro-ph/0206508.
[7] Measuring the cosmological constant with redshift surveys , 1996, astro-ph/9605017.
[8] F. Bernardeau,et al. Precision modeling of redshift-space distortions from a multipoint propagator expansion , 2013, 1301.3624.
[9] N. Yoshida,et al. SIMULATIONS OF BARYON ACOUSTIC OSCILLATIONS. II. COVARIANCE MATRIX OF THE MATTER POWER SPECTRUM , 2009, 0902.0371.
[10] Princeton,et al. Where are the Luminous Red Galaxies (LRGs)? Using correlation measurements and lensing to relate LRGs to dark matter haloes , 2012, 1211.1009.
[11] S. Deustua,et al. THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. V. IMPROVING THE DARK-ENERGY CONSTRAINTS ABOVE z > 1 AND BUILDING AN EARLY-TYPE-HOSTED SUPERNOVA SAMPLE , 2011, 1105.3470.
[12] M. White,et al. Evidence for Merging or Disruption of Red Galaxies from the Evolution of Their Clustering , 2006, astro-ph/0611901.
[13] R. Wechsler,et al. Modeling Luminosity-dependent Galaxy Clustering through Cosmic Time , 2005, astro-ph/0512234.
[14] Y. Suto,et al. Two-Point Correlation Function of High-Redshift Objects: An Explicit Formulation on a Light-Cone Hypersurface , 1999, astro-ph/9812486.
[15] Takahiro Sato,et al. Deconvolution of Window Effect in Galaxy Power Spectrum Analysis , 2010, 1010.0289.
[16] Adam G. Riess,et al. Observational probes of cosmic acceleration , 2012, 1201.2434.
[17] Alexander S. Szalay,et al. Measuring the Baryon Acoustic Oscillation scale using the Sloan Digital Sky Survey and 2dF Galaxy Redshift Survey , 2007 .
[18] K. Koyama,et al. Beyond consistency test of gravity with redshift-space distortions at quasilinear scales , 2013, 1309.6783.
[19] A. Taruya,et al. Baryon Acoustic Oscillations in 2D II: Redshift-space halo clustering in N-body simulations , 2011, 1106.4562.
[20] Cameron K. McBride,et al. Measuring DA and H at z = 0.35 from the SDSS DR7 LRGs using baryon acoustic oscillations , 2012, 1206.6732.
[21] D. A. García-Hernández,et al. THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT , 2013, 1307.7735.
[22] Fourier analysis of redshift-space distortions and the determination of Ω , 1993, astro-ph/9308003.
[23] Princeton,et al. Understanding the nature of luminous red galaxies (LRGs): connecting LRGs to central and satellite subhaloes , 2012, 1211.7077.
[24] N. Padmanabhan,et al. Constraining anisotropic baryon oscillations , 2008, 0804.0799.
[25] B. Jain,et al. Cosmological Tests of Gravity , 2010, 1004.3294.
[26] S. Brough,et al. The WiggleZ Dark Energy Survey: small-scale clustering of Lyman-break galaxies at z < 1 , 2009, 0901.2587.
[27] T. Narikawa,et al. Constraint on the cosmological f(R) model from the multipole power spectrum of the SDSS luminous red galaxy sample and prospects for a future redshift survey , 2010, 1004.3231.
[28] M. Phillips,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.
[29] N. Yoshida,et al. NON-GAUSSIAN ERROR CONTRIBUTION TO LIKELIHOOD ANALYSIS OF THE MATTER POWER SPECTRUM , 2009, 0912.1381.
[30] Takahiro Sato,et al. Testing General Relativity with the Multipole Spectra of the SDSS Luminous Red Galaxies , 2008, 0805.4789.
[31] N. Kaiser. Clustering in real space and in redshift space , 1987 .
[32] M. Crocce,et al. Transients from initial conditions in cosmological simulations , 2006, astro-ph/0606505.
[33] Technology,et al. On the systematic errors of cosmological-scale gravity tests using redshift-space distortion: non-linear effects and the halo bias , 2013, 1308.6087.
[34] Matthew Colless,et al. The 6dF Galaxy Survey: baryon acoustic oscillations and the local Hubble constant , 2011, 1106.3366.
[35] T. Nishimichi,et al. Combining perturbation theories with halo models , 2010, 1009.0597.
[36] J. Peacock,et al. Power spectrum analysis of three-dimensional redshift surveys , 1993, astro-ph/9304022.
[37] Daniel Thomas,et al. The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.
[38] R. Ellis,et al. The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.
[39] T. Matsubara,et al. Cosmological Redshift Distortion of Correlation Functions as a Probe of the Density Parameter and the Cosmological Constant , 1996, astro-ph/9604142.
[40] K. Abazajian,et al. THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.
[41] S. Saito,et al. Forecasting the Cosmological Constraints with Anisotropic Baryon Acoustic Oscillations from Multipole Expansion , 2011, 1101.4723.
[42] Ipmu,et al. Using galaxy–galaxy weak lensing measurements to correct the finger of God , 2011, 1106.1640.
[43] B. Reid,et al. CONSTRAINING THE LUMINOUS RED GALAXY HALO OCCUPATION DISTRIBUTION USING COUNTS-IN-CYLINDERS , 2008, 0809.4505.
[44] B. Reid,et al. An analytic model for redshift-space distortions , 2013, 1306.1804.
[45] T. Matsubara. Nonlinear Perturbation Theory Integrated with Nonlocal Bias, Redshift-space Distortions, and Primordial Non-Gaussianity , 2011, 1102.4619.
[46] C. A. Oxborrow,et al. Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.
[47] Padova,et al. Populating a cluster of galaxies - I. Results at z=0 , 2000, astro-ph/0012055.
[48] Case Western Reserve University,et al. HALO OCCUPATION DISTRIBUTION MODELING OF CLUSTERING OF LUMINOUS RED GALAXIES , 2008, 0809.1868.
[49] E. Bertschinger. On the Growth of Perturbations as a Test of Dark Energy and Gravity , 2006, astro-ph/0604485.
[50] B. Reid,et al. Towards an accurate model of the redshift-space clustering of haloes in the quasi-linear regime , 2011, 1105.4165.
[51] E. Turner,et al. A statistical method for determining the cosmological density parameter from the redshifts of a complete sample of galaxies. , 1977 .
[52] A. Mazure,et al. A test of the nature of cosmic acceleration using galaxy redshift distortions , 2008, Nature.
[53] T. Matsubara. Nonlinear perturbation theory with halo bias and redshift-space distortions via the Lagrangian picture , 2008, 0807.1733.
[54] S.Cole,et al. The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.
[55] B. Reid,et al. LUMINOUS RED GALAXY HALO DENSITY FIELD RECONSTRUCTION AND APPLICATION TO LARGE-SCALE STRUCTURE MEASUREMENTS , 2008, 0811.1025.
[56] Alexander S. Szalay,et al. Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.
[57] Correlation Function in Deep Redshift Space as a Cosmological Probe , 2004, astro-ph/0408349.
[58] A. Lewis,et al. Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.
[59] B. Paczyński,et al. An evolution free test for non-zero cosmological constant , 1979, Nature.
[60] P. Mcdonald,et al. Distribution function approach to redshift space distortions. Part II: N-body simulations , 2011, 1109.1609.
[61] Scott Croom,et al. The WiggleZ Dark Energy Survey: the growth rate of cosmic structure since redshift z=0.9 , 2011, 1104.2948.
[62] A. Hamilton. Redshift distortions and omega in IRAS surveys , 1995, astro-ph/9507022.
[63] T. Matsubara. Integrated Perturbation Theory and One-loop Power Spectra of Biased Tracers , 2013, 1304.4226.
[64] G. Efstathiou,et al. The evolution of large-scale structure in a universe dominated by cold dark matter , 1985 .
[65] Yun Wang,et al. Using multipoles of the correlation function to measure H(z), DA(z) and β(z) from Sloan Digital Sky Survey luminous red galaxies , 2012, 1205.5573.
[66] Edward J. Wollack,et al. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.
[67] T. Matsubara,et al. Resumming Cosmological Perturbations via the Lagrangian Picture: One-loop Results in Real Space and in Redshift Space , 2007, 0711.2521.
[68] B. Warner,et al. Observations of Rapid Blue Variables–III HL TAU-76 , 1972 .
[69] Hiroaki Nishioka,et al. A Measurement of the Quadrupole Power Spectrum in the Clustering of the 2dF QSO Survey , 2006 .
[70] Chia-Hsun Chuang,et al. Measurements of H(z) and DA(z) from the two-dimensional two-point correlation function of Sloan Digital Sky Survey luminous red galaxies , 2011, 1102.2251.
[71] Potsdam,et al. The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.
[72] P. Mcdonald,et al. Distribution function approach to redshift space distortions , 2011, 1109.1888.
[73] Judith G. Cohen,et al. Extragalactic science, cosmology, and Galactic archaeology with the Subaru Prime Focus Spectrograph , 2012, 1206.0737.
[74] Takahiro Nishimichi,et al. Nonlinear evolution of baryon acoustic oscillations from improved perturbation theory in real and redshift spaces , 2009, 0906.0507.
[75] Robert C. Nichol,et al. The three-point correlation function of luminous red galaxies in the Sloan Digital Sky Survey , 2007, astro-ph/0703340.
[76] U. Seljak,et al. Distribution function approach to redshift space distortions. Part III: halos and galaxies , 2012, 1206.4070.
[77] Roman Scoccimarro. Redshift-space distortions, pairwise velocities and nonlinearities , 2004 .
[78] R. Nichol,et al. Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.
[79] David Schlegel,et al. ACOUSTIC SCALE FROM THE ANGULAR POWER SPECTRA OF SDSS-III DR8 PHOTOMETRIC LUMINOUS GALAXIES , 2012, 1201.2172.
[80] Hee-Jong SeoDaniel J. Eisenstein. Probing Dark Energy with Baryonic Acoustic Oscillations from Future Large Galaxy Redshift Surveys , 2003 .
[81] Roman Scoccimarro. Transients from initial conditions: a perturbative analysis , 1998 .
[82] A. Lewis,et al. Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.
[83] A. Oka,et al. Simulating the anisotropic clustering of luminous red galaxies with subhaloes: a direct confrontation with observation and cosmological implications , 2013, 1310.2672.
[84] Scott Croom,et al. The WiggleZ Dark Energy Survey: measuring the cosmic growth rate with the two-point galaxy correlation function , 2013, 1302.5178.
[85] Estimating β from redshift‐space distortions in the 2dF galaxy survey , 1999, astro-ph/9905186.
[86] N. Yoshida,et al. The pairwise velocity probability density function in models with local primordial non-Gaussianity , 2010, 1008.0406.
[87] Y. Jing,et al. Modeling Nonlinear Evolution of Baryon Acoustic Oscillations: Convergence Regime of $N$-body Simulations and Analytic Models , 2008, 0810.0813.
[88] David Schlegel,et al. The DESI Experiment, a whitepaper for Snowmass 2013 , 2013, 1308.0847.
[89] P. Mcdonald,et al. Distribution function approach to redshift space distortions. Part IV: perturbation theory applied to dark matter , 2012, 1207.0839.
[90] V. Springel. The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.
[91] U. Seljak,et al. Wide angle effects in future galaxy surveys , 2013, 1308.1093.
[92] S. Colombi,et al. Large scale structure of the universe and cosmological perturbation theory , 2001, astro-ph/0112551.
[93] R. Nichol,et al. Measuring the Baryon Acoustic Oscillation scale using the SDSS and 2dFGRS , 2007, 0705.3323.
[94] Kazuhiro Yamamoto,et al. Observational constraints on kinetic gravity braiding from the integrated Sachs-Wolfe effect , 2011, 1110.3598.
[95] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[96] R. Ellis,et al. Measurements of $\Omega$ and $\Lambda$ from 42 high redshift supernovae , 1998, astro-ph/9812133.
[97] W. Percival,et al. Interpreting large-scale redshift-space distortion measurements , 2011, 1102.1014.
[98] Chia-Hsun Chuang,et al. Measurement of H(z) and DA(z) from the two-dimensional power spectrum of Sloan Digital Sky Survey luminous red galaxies , 2013, 1310.6468.
[99] S. Saito,et al. Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory , 2010, 1006.0699.
[100] A. Hamilton,et al. Linear redshift distortions: A Review , 1997, astro-ph/9708102.
[101] Edward J. Wollack,et al. FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE * OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2008, 0803.0547.
[102] M. White,et al. Red Galaxy Growth and the Halo Occupation Distribution , 2008, 0804.2293.
[103] Takahiro Nishimichi,et al. Direct and fast calculation of regularized cosmological power spectrum at two-loop order , 2012 .
[104] Yun Wang,et al. Modelling the anisotropic two-point galaxy correlation function on small scales and single-probe measurements of H(z), DA(z) and f(z)σ8(z) from the Sloan Digital Sky Survey DR7 luminous red galaxies , 2012, 1209.0210.
[105] Scott Croom,et al. The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.