Minimum Thermal Conductivity in Weak Topological Insulators with Bismuth‐Based Stack Structure

Contrary to the conventional belief that the consideration for topological insulators (TIs) as potential thermoelectrics is due to their excellent electrical properties benefiting from the topological surface states, this work shows that the 3D weak TIs, formed by alternating stacks of quantum spin Hall layers and normal insulator (NI) layers, can also be decent thermoelectrics because of their focus on minimum thermal conductivity. The minimum lattice thermal conductivity is experimentally confirmed in Bi14Rh3I9 and theoretically predicted for Bi2TeI at room temperature. It is revealed that the topologically “trivial” NI layers play a surprisingly critical role in hindering phonon propagation. The weak bonding in the NI layers gives rise to significantly low sound velocity, and the localized low-frequency vibrations of the NI layers cause strong acoustic–optical interactions and lattice anharmonicity. All these features are favorable for the realization of exceptionally low lattice thermal conductivity, and therefore present remarkable opportunities for developing high-performance thermoelectrics in weak TIs.

[1]  Srivastava,et al.  Electronic structure , 2001, Physics Subject Headings (PhySH).

[2]  Jihui Yang,et al.  Dual-frequency resonant phonon scattering in BaxRyCo4Sb12 (R=La, Ce and Sr) , 2007 .

[3]  R. W. Ure,et al.  Elastic Moduli and Phonon Properties of Bi 2 Te 3 , 1972 .

[4]  Andreas Kornowski,et al.  Synthesis and Thermoelectric Characterization of Bi2Te3 Nanoparticles , 2009, 1003.0621.

[5]  Claudia Felser,et al.  Topological insulators and thermoelectric materials , 2012, 1209.6097.

[6]  Yong Xu,et al.  Enhanced thermoelectric performance and anomalous seebeck effects in topological insulators. , 2014, Physical review letters.

[7]  Liang Fu,et al.  Topological insulators in three dimensions. , 2006, Physical review letters.

[8]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[9]  E. J. Mele,et al.  Z2 topological order and the quantum spin Hall effect. , 2005, Physical review letters.

[10]  R. Cava,et al.  Observation of a large-gap topological-insulator class with a single Dirac cone on the surface , 2009 .

[11]  Qiang Li,et al.  Origin of Phonon Glass–Electron Crystal Behavior in Thermoelectric Layered Cobaltate , 2013 .

[12]  S. Savilov,et al.  New subvalent bismuth telluroiodides incorporating Bi2 layers: the crystal and electronic structure of Bi2TeI , 2005 .

[13]  M. Kanatzidis,et al.  Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals , 2014, Nature.

[14]  Klaus Koepernik,et al.  Stacked topological insulator built from bismuth-based graphene sheet analogues. , 2013, Nature materials.

[15]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[16]  Wujie Qiu,et al.  Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy , 2014, Proceedings of the National Academy of Sciences.

[17]  D. Morelli,et al.  Role of lone-pair electrons in producing minimum thermal conductivity in nitrogen-group chalcogenide compounds. , 2011, Physical review letters.

[18]  F. Trouw,et al.  Coupling of localized guest vibrations with the lattice modes in clathrate hydrates , 2001 .

[19]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[20]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[21]  M. Dresselhaus,et al.  New Directions for Low‐Dimensional Thermoelectric Materials , 2007 .

[22]  Liang Fu,et al.  Topological insulators with inversion symmetry , 2006, cond-mat/0611341.

[23]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[24]  G. A. Slack,et al.  Thermal Conductivity and Phonon Scattering by Magnetic Impurities in CdTe , 1964 .

[25]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[26]  R. Cava,et al.  Structures and thermoelectric properties of the infinitely adaptive series "Bi2…m"Bi2Te3…n , 2007, cond-mat/0703528.

[27]  M. White,et al.  Origin of glassy crystalline behavior in the thermal properties of clathrate hydrates: a thermal conductivity study of tetrahydrofuran hydrate , 1988 .

[28]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[29]  Alex K.-Y. Jen,et al.  Rational Design of Advanced Thermoelectric Materials , 2013 .

[30]  J. E. Moore,et al.  In-plane transport and enhanced thermoelectric performance in thin films of the topological insulators Bi₂Te₃ and Bi₂Se₃. , 2010, Physical review letters.

[31]  Richard M. Martin Electronic Structure: Frontmatter , 2004 .

[32]  Claudia Felser,et al.  Weak topological insulators induced by the interlayer coupling: A first-principles study of stacked Bi2TeI , 2014 .

[33]  M. Dresselhaus,et al.  Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus. , 2015, Nano letters.

[34]  M. Dresselhaus,et al.  Raman Spectroscopy in Graphene Related Systems: JORIO:RAMAN O-BK , 2011 .

[35]  Paul Zschack,et al.  Ultralow Thermal Conductivity in Disordered, Layered WSe2 Crystals , 2007, Science.

[36]  S. Murakami,et al.  Thermoelectric transport in perfectly conducting channels in quantum spin Hall systems , 2009, 0910.4827.

[37]  R. Pohl Thermal Conductivity and Phonon Resonance Scattering , 1962 .

[38]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[39]  Xianfan Xu,et al.  Resonant oscillation of misch-metal atoms in filled skutterudites. , 2009, Physical review letters.

[40]  J. Brink,et al.  Subnanometre-wide electron channels protected by topology , 2015, 1501.05919.

[41]  C. Satterthwaite,et al.  Electrical and Thermal Properties of Bi 2 Te 3 , 1957 .

[42]  Glasslike Heat Conduction in High-Mobility Crystalline Semiconductors , 1998, cond-mat/9812387.

[43]  C. Felser,et al.  Prediction of weak topological insulators in layered semiconductors. , 2012, Physical review letters.

[44]  Baoling Huang,et al.  Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride , 2008 .

[45]  Isao Tanaka,et al.  First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures , 2008 .

[46]  Y. Tokura,et al.  Giant Rashba-type spin splitting in bulk BiTeI. , 2011, Nature materials.

[47]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[48]  Zheyong Fan,et al.  Enhanced thermoelectric performance in three-dimensional superlattice of topological insulator thin films , 2012, Nanoscale Research Letters.

[49]  Desheng Kong,et al.  Opportunities in chemistry and materials science for topological insulators and their nanostructures. , 2011, Nature chemistry.

[50]  Jihui Yang,et al.  Two-dimensional thermoelectrics with Rashba spin-split bands in bulk BiTeI , 2014 .

[51]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[52]  Ali Shakouri,et al.  Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features , 2010, Advanced materials.

[53]  Xi Dai,et al.  Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface , 2009 .

[54]  X. Su,et al.  Low-temperature transport properties of Tl-doped Bi_{2}Te_{3} single crystals , 2013 .