Neural Networks in Fr\'echet spaces

We derive approximation results for continuous functions from a Fréchet space X into its field F. The approximation is similar to the well known universal approximation theorems for continuous functions from Rn to R, where approximation is done with (multilayer) neural networks [10, 16, 12, 20]. Similar to classical neural networks, the approximating functions that we obtain are easy to implement and allows for fast computation and fitting.

[1]  Christian Beck,et al.  An overview on deep learning-based approximation methods for partial differential equations , 2020, ArXiv.

[2]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[3]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[4]  Arnulf Jentzen,et al.  Solving high-dimensional partial differential equations using deep learning , 2017, Proceedings of the National Academy of Sciences.

[5]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[6]  Karin Rothschild,et al.  A Course In Functional Analysis , 2016 .

[7]  Christa Cuchiero,et al.  Deep Neural Networks, Generic Universal Interpolation, and Controlled ODEs , 2019, SIAM J. Math. Data Sci..

[8]  J. K. Hunter,et al.  Measure Theory , 2007 .

[9]  Gitta Kutyniok,et al.  The Modern Mathematics of Deep Learning , 2021, ArXiv.

[10]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[11]  Xuesong Yan,et al.  Stock price prediction based on deep neural networks , 2019, Neural Computing and Applications.

[12]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[13]  Anastasis Kratsios,et al.  Non-Euclidean Universal Approximation , 2020, NeurIPS.

[14]  S. Semmes Topological Vector Spaces , 2003 .

[15]  Hans Triebel,et al.  A note on wavelet bases in function spaces , 2004 .

[16]  Per Enflo,et al.  A counterexample to the approximation problem in Banach spaces , 1973 .

[17]  J. Teichmann,et al.  Deep hedging , 2018, Quantitative Finance.

[18]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[19]  L. Schwartz Théorie des distributions , 1966 .

[20]  Fred Espen Benth,et al.  Accuracy of Deep Learning in Calibrating HJM Forward Curves , 2020 .

[21]  Anastasis Kratsios The Universal Approximation Property. , 2020 .

[22]  W. Scharlau,et al.  Einführung in die Funktionalanalysis , 1971 .

[23]  Michael Guerzhoy,et al.  Deep Neural Networks , 2013 .

[24]  Allan Pinkus,et al.  Multilayer Feedforward Networks with a Non-Polynomial Activation Function Can Approximate Any Function , 1991, Neural Networks.

[25]  Tuan Anh Nguyen,et al.  A proof that rectified deep neural networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations , 2019, SN Partial Differential Equations and Applications.