An Adaptive Optimizer for Measurement-Frugal Variational Algorithms

Variational hybrid quantum-classical algorithms (VHQCAs) have the potential to be useful in the era of near-term quantum computing. However, recently there has been concern regarding the number of measurements needed for convergence of VHQCAs. Here, we address this concern by investigating the classical optimizer in VHQCAs. We introduce a novel optimizer called individual Coupled Adaptive Number of Shots (iCANS). This adaptive optimizer frugally selects the number of measurements (i.e., number of shots) both for a given iteration and for a given partial derivative in a stochastic gradient descent. We numerically simulate the performance of iCANS for the variational quantum eigensolver and for variational quantum compiling, with and without noise. In all cases, and especially in the noisy case, iCANS tends to out-perform state-of-the-art optimizers for VHQCAs. We therefore believe this adaptive optimizer will be useful for realistic VHQCA implementations, where the number of measurements is limited.

[1]  W. Marsden I and J , 2012 .

[2]  Nathan Wiebe,et al.  Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers , 2019, npj Quantum Information.

[3]  Maria Schuld,et al.  Stochastic gradient descent for hybrid quantum-classical optimization , 2019, Quantum.

[4]  Masoud Mohseni,et al.  Learning to learn with quantum neural networks via classical neural networks , 2019, ArXiv.

[5]  Peter D. Johnson,et al.  QVECTOR: an algorithm for device-tailored quantum error correction , 2017, 1711.02249.

[6]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[7]  M. Girvin,et al.  Quantum Simulation of Gauge Theories and Inflation , 2019, Journal Club for Condensed Matter Physics.

[8]  S. Lloyd,et al.  Variational quantum unsampling on a quantum photonic processor , 2019, Nature Physics.

[9]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[10]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[12]  Margaret Martonosi,et al.  Minimizing State Preparations in Variational Quantum Eigensolver by Partitioning into Commuting Families , 2019, 1907.13623.

[13]  J. Spall Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .

[14]  K. Fujii,et al.  Variational Quantum Gate Optimization. , 2018, 1810.12745.

[15]  Ying Li,et al.  Theory of variational quantum simulation , 2018, Quantum.

[16]  Nathan Killoran,et al.  PennyLane: Automatic differentiation of hybrid quantum-classical computations , 2018, ArXiv.

[17]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[18]  Ying Li,et al.  Efficient Variational Quantum Simulator Incorporating Active Error Minimization , 2016, 1611.09301.

[19]  D. Anderson,et al.  Algorithms for minimization without derivatives , 1974 .

[20]  Ying Li,et al.  Variational ansatz-based quantum simulation of imaginary time evolution , 2018, npj Quantum Information.

[21]  Stuart Hadfield,et al.  Optimizing quantum heuristics with meta-learning , 2019, Quantum Machine Intelligence.

[22]  Tzu-Ching Yen,et al.  Unitary partitioning approach to the measurement problem in the Variational Quantum Eigensolver method. , 2019, Journal of chemical theory and computation.

[23]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[24]  P. Zoller,et al.  Self-verifying variational quantum simulation of lattice models , 2018, Nature.

[25]  Nathan Killoran,et al.  Quantum Natural Gradient , 2019, Quantum.

[26]  Tzu-Ching Yen,et al.  Measuring all compatible operators in one series of single-qubit measurements using unitary transformations. , 2019, Journal of chemical theory and computation.

[27]  Liyuan Liu,et al.  On the Variance of the Adaptive Learning Rate and Beyond , 2019, ICLR.

[28]  Barnaby van Straaten,et al.  Efficient quantum measurement of Pauli operators , 2019, 1908.06942.

[29]  Patrick J. Coles,et al.  Variational fast forwarding for quantum simulation beyond the coherence time , 2019, 1910.04292.

[30]  Margaret Martonosi,et al.  $O(N^3)$ Measurement Cost for Variational Quantum Eigensolver on Molecular Hamiltonians , 2019, IEEE Transactions on Quantum Engineering.

[31]  Donald G. M. Anderson Iterative Procedures for Nonlinear Integral Equations , 1965, JACM.

[32]  Michele Mosca,et al.  Pauli Partitioning with Respect to Gate Sets. , 2019, 1907.07859.

[33]  Alán Aspuru-Guzik,et al.  Quantum autoencoders for efficient compression of quantum data , 2016, 1612.02806.

[34]  Xiao Yuan,et al.  Variational algorithms for linear algebra , 2019, Science Bulletin.

[35]  Tyson Jones,et al.  Quantum compilation and circuit optimisation via energy dissipation , 2018 .

[36]  Y. Li,et al.  Variational Quantum Simulation of General Processes. , 2018, Physical review letters.

[37]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[38]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[39]  C. Gogolin,et al.  Evaluating analytic gradients on quantum hardware , 2018, Physical Review A.

[40]  Javier Romero,et al.  Coupling Adaptive Batch Sizes with Learning Rates , 2016, UAI.

[41]  Ryan LaRose,et al.  Variational Quantum Linear Solver: A Hybrid Algorithm for Linear Systems , 2019, 1909.05820.

[42]  John Napp,et al.  Low-Depth Gradient Measurements Can Improve Convergence in Variational Hybrid Quantum-Classical Algorithms. , 2019, Physical review letters.

[43]  P. Pulay Improved SCF convergence acceleration , 1982 .

[44]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[45]  Mikhail Smelyanskiy,et al.  Practical optimization for hybrid quantum-classical algorithms , 2017, 1701.01450.

[46]  Peter L. McMahon,et al.  A Jacobi Diagonalization and Anderson Acceleration Algorithm For Variational Quantum Algorithm Parameter Optimization. , 2019, 1904.03206.

[47]  Patrick J. Coles,et al.  Variational consistent histories as a hybrid algorithm for quantum foundations , 2018, Nature Communications.

[48]  Keisuke Fujii,et al.  Sequential minimal optimization for quantum-classical hybrid algorithms , 2019, Physical Review Research.

[49]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[50]  J. Spall Implementation of the simultaneous perturbation algorithm for stochastic optimization , 1998 .

[51]  Xiao Yuan,et al.  Variational quantum algorithms for discovering Hamiltonian spectra , 2018, Physical Review A.

[52]  Yoshua Bengio,et al.  Algorithms for Hyper-Parameter Optimization , 2011, NIPS.

[53]  M. Hastings,et al.  Progress towards practical quantum variational algorithms , 2015, 1507.08969.

[54]  Keisuke Fujii,et al.  Quantum circuit learning , 2018, Physical Review A.

[55]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[56]  Kunal Sharma,et al.  Noise resilience of variational quantum compiling , 2019, New Journal of Physics.

[57]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[58]  Patrick J. Coles,et al.  Variational Quantum Fidelity Estimation , 2019, Quantum.

[59]  Patrick J. Coles,et al.  Variational quantum state diagonalization , 2018, npj Quantum Information.

[60]  Yuya O. Nakagawa,et al.  Variational quantum algorithm for nonequilibrium steady states , 2019, 1908.09836.

[61]  Ryan LaRose,et al.  Quantum-assisted quantum compiling , 2018, Quantum.