Integration of diverse microarray data types.

Over the past decade, DNA microarrays have proven to be a powerful tool in biological research for the molecular surveillance of cells and tissues. The expansive utility of DNA microarrays owes its nascence to the development of a multitude of microarray platforms that enable the systematic and comprehensive exploration of diverse genomic properties and processes. Concomitant with the explosive generation of microarray data over the last several years has been an increasing interest in the integration of such diverse data types, thus spurring the development of novel statistical techniques and integrative bioinformatics tools. This chapter will outline general approaches to microarray data integration and provide an introduction to DR-Integrator, a broadly useful analysis tool for the integration of DNA copy number and gene-expression microarray data.

[1]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[2]  D. Pe’er,et al.  Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification , 2006, Proceedings of the National Academy of Sciences.

[3]  R. Tibshirani,et al.  Spatial smoothing and hot spot detection for CGH data using the fused lasso. , 2008, Biostatistics.

[4]  D. Koller,et al.  A module map showing conditional activity of expression modules in cancer , 2004, Nature Genetics.

[5]  Ash A. Alizadeh,et al.  Genome-wide analysis of DNA copy number variation in breast cancer using DNA microarrays , 1999, Nature Genetics.

[6]  Peter J. Park,et al.  CGHweb: a tool for comparing DNA copy number segmentations from multiple algorithms , 2008, Bioinform..

[7]  J. Tegnér,et al.  Integrated approaches to uncovering transcription regulatory networks in mammalian cells. , 2008, Genomics.

[8]  M. van de Rijn,et al.  Genomic Profiling Identifies GATA6 as a Candidate Oncogene Amplified in Pancreatobiliary Cancer , 2008, PLoS genetics.

[9]  Tim Hui-Ming Huang,et al.  Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. , 2002, Genes & development.

[10]  Jane Fridlyand,et al.  Bioinformatics Original Paper a Comparison Study: Applying Segmentation to Array Cgh Data for Downstream Analyses , 2022 .

[11]  C. Croce,et al.  MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[12]  M. Wigler,et al.  Identification and Validation of Oncogenes in Liver Cancer Using an Integrative Oncogenomic Approach , 2006, Cell.

[13]  S. Dhanasekaran,et al.  Integrative genomics analysis reveals silencing of beta-adrenergic signaling by polycomb in prostate cancer. , 2007, Cancer cell.

[14]  Peter J. Park,et al.  Comparative analysis of algorithms for identifying amplifications and deletions in array CGH data , 2005, Bioinform..

[15]  L. Chin,et al.  Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers , 2007, Nature.

[16]  I Petersen,et al.  Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer , 2008, Oncogene.

[17]  T. Golub,et al.  Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma , 2005, Nature.

[18]  A. Butte,et al.  Exploring genomic medicine using integrative biology , 2005 .

[19]  Colin C. Collins,et al.  Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors , 2002, Nature Genetics.

[20]  Ash A. Alizadeh,et al.  Genome-wide analysis of DNA copy-number changes using cDNA microarrays , 1999, Nature Genetics.

[21]  Christian A. Rees,et al.  Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  C. M. Chen,et al.  Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. , 2001, Cancer research.

[23]  Clifford A. Meyer,et al.  Genome-wide analysis of estrogen receptor binding sites , 2006, Nature Genetics.

[24]  Derek Y. Chiang,et al.  Characterizing the cancer genome in lung adenocarcinoma , 2007, Nature.

[25]  W. Kuo,et al.  High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays , 1998, Nature Genetics.

[26]  Fenghua Liu,et al.  A genome-wide screen reveals functional gene clusters in the cancer genome and identifies EphA2 as a mitogen in glioblastoma. , 2006, Cancer research.

[27]  P. Brown,et al.  Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions , 2001, Genome Biology.

[28]  Robert Lucito,et al.  RNA interference microarrays: high-throughput loss-of-function genetics in mammalian cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  L. Chin,et al.  Comparative Oncogenomics Identifies NEDD9 as a Melanoma Metastasis Gene , 2006, Cell.

[30]  S. P. Fodor,et al.  Large-scale genotyping of complex DNA , 2003, Nature Biotechnology.