Survey of stochastic models for wind and sea state time series

The knowledge of sea state and wind conditions is of central importance for many offshore and nearshore operations. In this paper, we make a complete survey of stochastic models for sea state and wind time series. We begin with methods based on Gaussian processes, then non-parametric resampling methods for time series are introduced followed by various parametric models. We also propose an original statistical method, based on Monte Carlo goodness-of-fit tests, for model validation and comparison and this method is illustrated on an example of multivariate sea state time series.

[1]  George Deodatis,et al.  Simulation of homogeneous nonGaussian stochastic vector fields , 1998 .

[2]  Steve Elgar,et al.  Numerically Simulating Non-Gaussian Sea Surfaces , 1997 .

[3]  Chung-Ren Chou,et al.  Study On Simulating the Time Series of Significant Wave Heights Near the Keelung Harbor , 2002 .

[4]  Theo Brandsma,et al.  Multisite simulation of daily precipitation and temperature in the Rhine Basin by nearest‐neighbor resampling , 2001 .

[5]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[6]  Peter C. Young,et al.  Recursive forecasting, smoothing and seasonal adjustment of non‐stationary environmental data , 1991 .

[7]  Gerassimos A. Athanassoulis,et al.  Probabilistic description of metocean parameters by means of kernel density models 1. Theoretical background and first results , 2002 .

[8]  Peter G. Challenor,et al.  Statistical comparisons of satellite and model wave climatologies , 2002 .

[9]  A. A. Chen,et al.  Stochastic simulation and forecasting of hourly average wind speed sequences in Jamaica , 1991 .

[10]  Finn Gunnar Nielsen,et al.  Seasonal Modeling of Multivariate Distributions of Metocean Parameters With Application to Marine Operations , 2004 .

[11]  M. R. Leadbetter,et al.  Modelling and Statistical Analysis of ocean-wave data using transformed gaussian processes , 1997 .

[12]  Pierre Ailliot,et al.  An autoregressive model with time‐varying coefficients for wind fields , 2006 .

[13]  Felice Arena,et al.  The Reconstruction of Significant Wave Height Time Series by Using a Neural Network Approach , 2004 .

[14]  Emmanuel Frénod,et al.  Long Term Object Drift Forecast in the Ocean with Tide and Wind , 2006, Multiscale Model. Simul..

[15]  A. Sterl,et al.  A New Nonparametric Method to Correct Model Data: Application to Significant Wave Height from the ERA-40 Re-Analysis , 2005 .

[16]  null null,et al.  List of Sea‐State Parameters , 1989 .

[17]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1972 .

[18]  R G Standing,et al.  A METHOD FOR SYNTHESISING TIME HISTORY DATA FROM PERSISTENCE STATISTICS AND ITS USE IN OPERATIONAL MODELLING , 1987 .

[19]  John R. Schultz,et al.  Stochastic time-series simulation of wave parameters using ship observations , 2003 .

[20]  Konstandinos A. Belibassakis,et al.  Nonstationary Stochastic Modelling of Multivariate Long-Term Wind and Wave Data , 2005 .

[21]  C. Guedes Soares,et al.  Bivariate autoregressive models for the time series of significant wave height and mean period , 2000 .

[22]  C. Guedes Soares,et al.  Representation of non-stationary time series of significant wave height with autoregressive models , 1996 .

[23]  S. Lahiri Resampling Methods for Dependent Data , 2003 .

[24]  Zai-Jin You,et al.  Initial Motion of Sediment in Oscillatory Flow , 1998 .

[25]  A. Raftery,et al.  The Mixture Transition Distribution Model for High-Order Markov Chains and Non-Gaussian Time Series , 2002 .

[26]  C. F. Ratto,et al.  Stochastic modelling of wind velocities time series , 1998 .

[27]  F. M. O'Carroll Weather Modelling for Offshore Operations , 1984 .

[28]  C. Guedes Soares,et al.  Analysis of sea waves and wind from X-band radar , 2005 .

[29]  Gerassimos A. Athanassoulis,et al.  Multiscale Time Series Modelling of Significant Wave Height , 2002 .

[30]  Marc Prevosto,et al.  Bivariate simulation of non stationary and non Gaussian observed processes: Application to sea state parameters , 2000 .

[31]  Z. Huang,et al.  Use of time-series analysis to model and forecast wind speed , 1995 .

[32]  Kenneth C. Young,et al.  A Multivariate Chain Model for Simulating Climatic Parameters from Daily Data , 1994 .

[33]  Mircea Grigoriu,et al.  Simulation of non-Gaussian field applied to wind pressure fluctuations , 2000 .

[34]  P. Marteau,et al.  L 1-convergence of smoothing densities in non-parametric state space models , 2005 .

[35]  P. Guttorp,et al.  A non‐homogeneous hidden Markov model for precipitation occurrence , 1999 .

[36]  M. Grigoriu Applied Non-Gaussian Processes , 1995 .

[37]  Dina Makarynska,et al.  Artificial neural networks in wave predictions at the west coast of Portugal , 2005, Comput. Geosci..

[38]  A. H. Murphy,et al.  Time Series Models to Simulate and Forecast Wind Speed and Wind Power , 1984 .

[39]  Norman W. Scheffner,et al.  Dredging Research Program: Simulation of Time Sequences of Wave Height, Period, and Direction , 1991 .

[40]  Pol D. Spanos,et al.  Probabilistic engineering mechanics , 1992 .

[41]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[42]  W. Härdle,et al.  Bootstrap Methods for Time Series , 2003 .

[43]  Richard S. J. Tol Autoregressive Conditional Heteroscedasticity in daily wind speed measurements , 1997 .

[44]  Sheng G. Shi Local bootstrap , 1991 .

[45]  Takvor H. Soukissian,et al.  Simulation of sea state parameters process to study the profitability of a maritime line , 2003 .

[46]  Patrick van der Smagt,et al.  Introduction to neural networks , 1995, The Lancet.

[47]  A. Munk,et al.  Hidden Markov models for circular and linear-circular time series , 2006, Environmental and Ecological Statistics.

[48]  Nicholas I. Fisher,et al.  Time Series Analysis of Circular Data , 1994 .

[49]  Norman W. Scheffner,et al.  STOCHASTIC TIME-SERIES REPRESENTATION OF WAVE DATA , 1992 .

[50]  Alastair D. Jenkins Wave Duration/Persistence Statistics, Recording Interval, and Fractal Dimension , 2001 .

[51]  Felice Arena,et al.  A New Approach for the Reconstruction of Significant Wave Height Time-Series , 2002 .

[52]  Richard A. Davis,et al.  Time Series: Theory and Methods , 2013 .

[53]  C. Guedes Soares,et al.  Modelling the long-term time series of significant wave height with non-linear threshold models , 2000 .

[54]  Valérie Monbet,et al.  Continuous Space Discrete Time Markov Models For Multivariate Sea State Parameter Processes , 2001 .

[55]  Christos Stefanakos,et al.  A nonstationary stochastic model for long-term time series of significant wave height , 1995 .

[56]  V. Monbet,et al.  Non Parametric Modelling of Cyclo-Stationary Markovian Processes Part I: Simulation of Multivariate Sea State Processes , 2004 .

[57]  Upmanu Lall,et al.  A Nearest Neighbor Bootstrap For Resampling Hydrologic Time Series , 1996 .

[58]  Christos Stefanakos,et al.  A unified methodology for the analysis, completion and simulation of nonstationary time series with missing values, with application to wave data , 2001 .

[59]  P. Marteau,et al.  Non parametric resampling for stationary Markov processes: The local grid bootstrap approach , 2006 .

[60]  P. Marteau,et al.  L1-convergence of smoothing densities in non-parametric state space models , 2008 .

[61]  A. Raftery A model for high-order Markov chains , 1985 .

[62]  Regina Y. Liu Moving blocks jackknife and bootstrap capture weak dependence , 1992 .

[63]  A. Louche,et al.  Forecasting and simulating wind speed in Corsica by using an autoregressive model , 2003 .

[64]  Athanasios Sfetsos,et al.  A comparison of various forecasting techniques applied to mean hourly wind speed time series , 2000 .

[65]  Brunello Tirozzi Neural Networks and Sea Time Series: Reconstruction and Extreme-Event Analysis , 2005 .

[66]  P. F. Marteau,et al.  CONDITIONAL PREDICTION OF MARKOV PROCESSES USING NON PARAMETRIC VITERBI ALGORITHM-COMPARISON WITH MLP AND GRNN MODELS , 2004 .

[67]  Richard A. Davis,et al.  Time Series: Theory and Methods (2nd ed.). , 1992 .

[68]  C. Guedes Soares,et al.  Modelling bivariate distributions of significant wave height and mean wave period. , 2002 .

[69]  Gregor Giebel,et al.  State-of-the-Art on Methods and Software Tools for Short-Term Prediction of Wind Energy Production , 2003 .

[70]  M. C. Deo,et al.  Neural networks for wave forecasting , 2001 .

[71]  Igor Rychlik,et al.  Fatigue life prediction for a vessel sailing the North Atlantic route , 2007 .

[72]  J. Breckling The Analysis of Directional Time Series: Applications to Wind Speed and Direction , 1989 .

[73]  H. Nfaoui,et al.  Stochastic simulation of hourly average wind speed sequences in Tangiers (Morocco) , 1996 .

[74]  Todd L. Walton,et al.  Simulation of Nonstationary, Non‐Gaussian Water Levels on Great Lakes , 1990 .

[75]  Lain L. MacDonald,et al.  Hidden Markov and Other Models for Discrete- valued Time Series , 1997 .

[76]  Pierre Ailliot,et al.  Two Methods For Simulating the Bivariate Process of Wave Height And Direction , 2001 .

[77]  C. Guedes Soares,et al.  On the choice of data transformation for modelling time series of significant wave height , 1999 .

[78]  Ping-Chun Ho,et al.  A study of the data transferability between two wave-measuring stations , 2005 .

[79]  Takvor H. Soukissian,et al.  Joint Occurrence of Sea States And Associated Durations , 2001 .

[80]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[81]  Chang Lin,et al.  Neural network for wave forecasting among multi-stations , 2002 .

[82]  Paul A. Hwang,et al.  An Operational Method for Separating Wind Sea and Swell from Ocean Wave Spectra , 2001 .

[83]  M. C. Deo,et al.  Forecasting wind with neural networks , 2003 .

[84]  A. Raftery,et al.  Estimation and Modelling Repeated Patterns in High Order Markov Chains with the Mixture Transition Distribution Model , 1994 .

[85]  James D. Hamilton A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle , 1989 .

[86]  Z. Şen,et al.  First-order Markov chain approach to wind speed modelling , 2001 .

[87]  Pierre Le Hir,et al.  Modélisation morphodynamique cross-shore d'un estran vaseux , 2004 .

[88]  Gerassimos A. Athanassoulis,et al.  Bivariate distributions with given marginals with an application to wave climate description , 1994 .