The geometry and topology of reconfiguration

A number of reconfiguration problems in robotics, biology, computer science, combinatorics, and group theory coordinate local rules to effect global changes in system states. We define for any such reconfigurable system a cubical complex-the state complex-which coordinates independent local moves. We prove classification and realization theorems for state complexes, using CAT(0) geometry as the primary tool.

[1]  Daniela Rus,et al.  Cellular Automata for Decentralized Control of Self-Reconfigurable Robots , 2007 .

[2]  Zack J. Butler,et al.  Distributed Motion Planning for 3D Modular Robots with Unit-Compressible Modules , 2002, WAFR.

[3]  Richard B. Fair,et al.  Integrated chemical/biochemical sample collection, pre-concentration, and analysis on a digital microfluidic lab-on-a-chip platform , 2004, SPIE Optics East.

[4]  Zack J. Butler,et al.  Distributed motion planning for modular robots with unit-compressible modules , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[5]  Daniel T. Wise,et al.  Special Cube Complexes , 2008, The Structure of Groups with a Quasiconvex Hierarchy.

[6]  Ying Zhang,et al.  Distributed Control for 3D Metamorphosis , 2001, Auton. Robots.

[7]  Vaughan R. Pratt,et al.  Modeling concurrency with geometry , 1991, POPL '91.

[8]  Steven M. LaValle,et al.  Nonpositive Curvature and Pareto Optimal Coordination of Robots , 2006, SIAM J. Control. Optim..

[9]  Daniel S. Farley Finiteness and CAT(0) properties of diagram groups , 2003 .

[10]  John Crisp,et al.  Embeddings of graph braid and surface groups in right-angled Artin groups and braid groups , 2003 .

[11]  R. Fair,et al.  Electrowetting-based on-chip sample processing for integrated microfluidics , 2003, IEEE International Electron Devices Meeting 2003.

[12]  Robert Ghrist,et al.  Finding Topology in a Factory: Configuration Spaces , 2002, Am. Math. Mon..

[13]  M. Karplus,et al.  How does a protein fold? , 1994, Nature.

[14]  Michael W. Davis Groups Generated by reflections and aspherical manifolds not covered by Euclidean space , 1983 .

[15]  Martin Raußen,et al.  On the classification of dipaths in geometric models for concurrency , 2000, Mathematical Structures in Computer Science.

[16]  Graham A. Niblo,et al.  The geometry of cube complexes and the complexity of their fundamental groups , 1998 .

[17]  Tadeusz Januszkiewicz,et al.  Right-angled Artin groups are commensurable with right-angled Coxeter groups , 2000 .

[18]  Javier Esparza,et al.  The mathematics of Petri Nets , 1990 .

[19]  E. Weisstein Kneser's Conjecture , 2002 .

[20]  Philippe Gaucher,et al.  About the globular homology of higher dimensional automata , 2000, ArXiv.

[21]  Estimates for homological dimension of configuration spaces of graphs , 2001 .

[22]  Nancy M. Amato,et al.  Concurrent metamorphosis of hexagonal robot chains into simple connected configurations , 2002, IEEE Trans. Robotics Autom..

[23]  Eiichi Yoshida,et al.  Distributed formation control for a modular mechanical system , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[24]  Tomás Lozano-Pérez,et al.  On multiple moving objects , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[25]  Ruth Charney,et al.  The Tits Conjecture for Locally Reducible Artin Groups , 2000, Int. J. Algebra Comput..

[26]  David B. A. Epstein,et al.  Word processing in groups , 1992 .

[27]  Nancy M. Amato,et al.  Distributed reconfiguration of metamorphic robot chains , 2004, PODC '00.

[28]  Eric Goubault,et al.  Schedulers as abstract interpretations of higher-dimensional automata , 1995, PEPM '95.

[29]  M. Karplus,et al.  Kinetics of protein folding. A lattice model study of the requirements for folding to the native state. , 1994, Journal of molecular biology.

[30]  Robert Ghrist,et al.  State Complexes for Metamorphic Robots , 2004, Int. J. Robotics Res..

[31]  Gregory S. Chirikjian,et al.  Kinematics of a metamorphic robotic system , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[32]  Robert Ghrist Shape Complexes for Metamorhpic Robots , 2002, WAFR.

[33]  László Lovász,et al.  Kneser's Conjecture, Chromatic Number, and Homotopy , 1978, J. Comb. Theory A.

[34]  Nancy M. Amato,et al.  Choosing good paths for fast distributed reconfiguration of hexagonal metamorphic robots , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[35]  A. O. Houcine On hyperbolic groups , 2006 .

[36]  Judith Hylton SAFE: , 1993 .

[37]  Lawrence Reeves Rational subgroups of cubed $3$-manifold groups. , 1995 .

[38]  Louis J. Billera,et al.  Geometry of the Space of Phylogenetic Trees , 2001, Adv. Appl. Math..

[39]  Richard Bishop,et al.  Pursuit and Evasion in Non-convex Domains of Arbitrary Dimensions , 2006, Robotics: Science and Systems.

[40]  Frank H. Lutz,et al.  Graph coloring manifolds , 2006 .

[41]  Xiao-Song Lin,et al.  Configuration spaces and braid groups on graphs in robotics , 2001 .

[42]  Eric Goubault,et al.  Schedulers as Abstract Interpreter of Higher Dimensional Automata. , 1995 .

[43]  Martin Raussen,et al.  State spaces and dipaths up to dihomotopy , 2003 .

[44]  Jason M. O'Kane,et al.  Computing Pareto Optimal Coordinations on Roadmaps , 2005, Int. J. Robotics Res..

[45]  Robert Ghrist Configuration spaces and braid groups on graphs in robotics , 1999 .

[46]  Daniel E. Koditschek,et al.  Safe Cooperative Robot Dynamics on Graphs , 2000, SIAM J. Control. Optim..

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.