Polymer Nanocomposites: The “Nano” Effect on Mechanical Properties

Polymer nanocomposites offer significant potential in the development of advanced materials for numerous applications. These novel materials benefit from the synergy between filler particles and polymer chains that are on similar length scales and the large quantity of interfacial area relative to the volume of the material. Although enhanced properties of these materials have been demonstrated by numerous researchers, our fundamental knowledge of the “nano” effect in terms of mechanical properties is not fully developed. In this article, we discuss the important properties of three components in a general polymer nanocomposite: the polymer matrix, the nanoscale filler, and the interfacial region. We highlight theory and experimental observations from several different fields to help guide the future research and development of understanding in this critical field.

[1]  H. Ishida,et al.  General Approach to Nanocomposite Preparation , 2022 .

[2]  A. Balazs,et al.  Determining the phase behavior of nanoparticle‐filled binary blends , 2006 .

[3]  K. Wei,et al.  Synthesis and characterization of novel segmented polyurethane/clay nanocomposite via poly(ε‐caprolactone)/clay , 1999 .

[4]  Anna C Balazs,et al.  Using nanoparticles to create self-healing composites. , 2004, The Journal of chemical physics.

[5]  E. Pavlidou,et al.  Preparation by melt mixing and characterization of isotactic polypropylene/SiO2 nanocomposites containing untreated and surface-treated nanoparticles , 2006 .

[6]  Martin Y.M. Chiang,et al.  Combinatorial and high-throughput measurements of the modulus of thin polymer films , 2005 .

[7]  L. Schadler,et al.  Mechanical Properties of Al 2 O 3 / Polymethylmethacrylate Nanocomposites , 2002 .

[8]  M. Boyce,et al.  Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle , 2004 .

[9]  L. Schadler,et al.  Quantitative equivalence between polymer nanocomposites and thin polymer films , 2005, Nature materials.

[10]  T. Emrick,et al.  Nanoparticle Alignment and Repulsion during Failure of Glassy Polymer Nanocomposites , 2006 .

[11]  E. Kramer,et al.  Failure mechanisms of polymer interfaces reinforced with block copolymers , 1992 .

[12]  B. Lauterwasser,et al.  Microscopic mechanisms and mechanics of craze growth and fracture , 1979 .

[13]  Joseph L. Keddie,et al.  Size-Dependent Depression of the Glass Transition Temperature in Polymer Films , 1994 .

[14]  Anna C. Balazs,et al.  Nanoparticle Polymer Composites: Where Two Small Worlds Meet , 2006, Science.

[15]  Anna C. Balazs,et al.  Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures , 2006 .

[16]  C. Batt,et al.  Effect of Nanoparticle Mobility on Toughness of Polymer Nanocomposites , 2005 .

[17]  G. Vigier,et al.  Clay-reinforced polyamide : Preferential orientation of the montmorillonite sheets and the polyamide crystalline lamellae , 2001 .

[18]  T. D. Fornes,et al.  Polymer matrix degradation and color formation in melt processed nylon 6/clay nanocomposites , 2003 .

[19]  A. Donald,et al.  Effect of molecular entanglements on craze microstructure in glassy polymers , 1982 .

[20]  L. Brinson,et al.  A Hybrid Numerical-Analytical Method for Modeling the Viscoelastic Properties of Polymer Nanocomposites , 2006 .

[21]  C. Stafford,et al.  Measuring the Modulus of Soft Polymer Networks via a Buckling-Based Metrology , 2006 .

[22]  Anna C. Balazs,et al.  Healing Surface Defects with Nanoparticle-Filled Polymer Coatings: Effect of Particle Geometry , 2005 .

[23]  C. Hall,et al.  Computer Simulation of Block Copolymer/Nanoparticle Composites , 2005 .

[24]  S. Radhakrishnan,et al.  Structure development and crystallization behaviour of PP/nanoparticulate composite , 2001 .

[25]  T. Emrick,et al.  Surface-functionalized CdSe nanorods for assembly in diblock copolymer templates. , 2006, Journal of the American Chemical Society.

[26]  Richard W. Siegel,et al.  Mechanical properties of Al2O3/polymethylmethacrylate nanocomposites , 2002 .

[27]  H. Brown,et al.  Chain entanglement in thin freestanding polymer films. , 2005, Physical review letters.

[28]  S. Ahmed,et al.  A review of particulate reinforcement theories for polymer composites , 1990 .

[29]  Anna C. Balazs,et al.  Using nanocomposite coatings to heal surface defects , 2004 .

[30]  R. Jones,et al.  Character of the glass transition in thin supported polymer films. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  M. Rubner,et al.  A Two-Plate Buckling Technique for Thin Film Modulus Measurements: Applications to Polyelectrolyte Multilayers , 2006 .

[32]  David A. Weitz,et al.  Soft Condensed Matter , 2003 .

[33]  Anna C Balazs,et al.  Simulating the morphology and mechanical properties of filled diblock copolymers. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  Bryan D. Vogt,et al.  Elastic Moduli of Ultrathin Amorphous Polymer Films , 2006 .

[35]  Sharon C. Glotzer,et al.  Molecular dynamics simulation of a polymer melt with a nanoscopic particle , 2002 .

[36]  Todd Emrick,et al.  Self-directed self-assembly of nanoparticle/copolymer mixtures , 2005, Nature.

[37]  Sie Chin Tjong,et al.  STRUCTURAL AND MECHANICAL PROPERTIES OF POLYMER NANOCOMPOSITES , 2006 .

[38]  Willi Volksen,et al.  A buckling-based metrology for measuring the elastic moduli of polymeric thin films , 2004, Nature materials.

[39]  D. Pochan,et al.  Unusual Crystallization Behavior of Organoclay Reinforced Poly(l-lactic acid) Nanocomposites , 2004 .

[40]  M. Fasolka,et al.  High-Throughput Craze Studies in Gradient Thin Films Using Ductile Copper Grids , 2004 .

[41]  A. Balazs,et al.  Thermodynamic Behavior of Particle/Diblock Copolymer Mixtures: Simulation and Theory , 2000 .

[42]  E. Thomas,et al.  Self-Assembly of Block Copolymers for Photonic-Bandgap Materials , 2005 .

[43]  E. Thomas,et al.  Block Copolymer Nanocomposites: Perspectives for Tailored Functional Materials , 2005, Advanced materials.