Estimating aboveground woody biomass change in Kalahari woodland: combining field, radar, and optical data sets

ABSTRACT Maps that accurately quantify aboveground vegetation biomass (AGB) are essential for ecosystem monitoring and conservation. Throughout Namibia, four vegetation change processes are widespread, namely, deforestation, woodland degradation, the encroachment of the herbaceous and grassy layers by woody strata (woody thickening), and woodland regrowth. All of these vegetation change processes affect a range of key ecosystem services, yet their spatial and temporal dynamics and contributions to AGB change remain poorly understood. This study quantifies AGB associated with the different vegetation change processes over an 8-year period, for a region of Kalahari woodland savannah in northern Namibia. Using data from 101 forest inventory plots collected during two field campaigns (2014–2015), we model AGB as a function of the Advanced Land Observing Satellite Phased Array L-band synthetic aperture radar (PALSAR and PALSAR-2) and dry season Landsat vegetation index composites, for two periods (2007 and 2015). Differences in AGB between 2007 and 2015 were assessed and validated using independent data, and changes in AGB for the main vegetation processes are quantified for the whole study area (75,501 km2). We find that woodland degradation and woody thickening contributed a change in AGB of −14.3 and 2.5 Tg over 14% and 3.5% of the study area, respectively. Deforestation and regrowth contributed a smaller portion of AGB change, i.e. −1.9 and 0.2 Tg over 1.3% and 0.2% of the study area, respectively.

[1]  Alan Grainger,et al.  The extent of forest in dryland biomes , 2017, Science.

[2]  Martin Brandt,et al.  Mapping gains and losses in woody vegetation across global tropical drylands , 2017, Global change biology.

[3]  Martin Brandt,et al.  Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa , 2017, Nature Ecology &Evolution.

[4]  G. Durigan,et al.  Savanna woody encroachment is widespread across three continents , 2017, Global change biology.

[5]  C. Schmullius,et al.  Assessment of Aboveground Woody Biomass Dynamics Using Terrestrial Laser Scanner and L-Band ALOS PALSAR Data in South African Savanna , 2016 .

[6]  C. Ryan,et al.  Ecosystem services from southern African woodlands and their future under global change , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[7]  Stuart R. Phinn,et al.  Mapping Decadal Land Cover Changes in the Woodlands of North Eastern Namibia from 1975 to 2014 Using the Landsat Satellite Archived Data , 2016, Remote. Sens..

[8]  Lijuan Liu,et al.  A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems , 2016, Int. J. Digit. Earth.

[9]  Nuno Carvalhais,et al.  Codominant water control on global interannual variability and trends in land surface phenology and greenness , 2015, Global change biology.

[10]  Heather Reese,et al.  Mapping Tree Canopy Cover and Aboveground Biomass in Sudano-Sahelian Woodlands Using Landsat 8 and Random Forest , 2015, Remote. Sens..

[11]  Waldo Kleynhans,et al.  Savannah woody structure modelling and mapping using multi-frequency (X-, C- and L-band) synthetic aperture radar data , 2015 .

[12]  Stefan Dech,et al.  Remote Sensing Time Series: Revealing Land Surface Dynamics , 2015 .

[13]  Atul K. Jain,et al.  The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink , 2015, Science.

[14]  Roberta E. Martin,et al.  Biomass Increases Go under Cover: Woody Vegetation Dynamics in South African Rangelands , 2015, PloS one.

[15]  Matthew F. McCabe,et al.  Recent reversal in loss of global terrestrial biomass , 2015 .

[16]  C. Woodcock,et al.  Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images , 2015 .

[17]  Arturo Sanchez-Azofeifa,et al.  Estimating Forest Biomass Dynamics by Integrating Multi-Temporal Landsat Satellite Images with Ground and Airborne LiDAR Data in the Coal Valley Mine, Alberta, Canada , 2015, Remote. Sens..

[18]  Elias Symeonakis,et al.  Remote Sensing Assessing Land Degradation and Desertification Using Vegetation Index Data: Current Frameworks and Future Directions , 2022 .

[19]  B. Nelson,et al.  Improved allometric models to estimate the aboveground biomass of tropical trees , 2014, Global change biology.

[20]  M. Brandt,et al.  Environmental change in time series – An interdisciplinary study in the Sahel of Mali and Senegal , 2014 .

[21]  Giles M. Foody,et al.  Good practices for estimating area and assessing accuracy of land change , 2014 .

[22]  Yi Y. Liu,et al.  Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle , 2014, Nature.

[23]  M. Hoffman,et al.  Bush encroachment in southern Africa: changes and causes , 2014 .

[24]  Qingxi Tong,et al.  Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance , 2014 .

[25]  M. Brandt Environmental Change Based on Earth Observation and Field Data -- A Local Study in the Sahel Zone of Mali and Senegal , 2014 .

[26]  R. Lucas,et al.  New global forest/non-forest maps from ALOS PALSAR data (2007–2010) , 2014 .

[27]  N. Kuhn,et al.  Soil–vegetation interaction on slopes with bush encroachment in the central Alps – adapting slope stability measurements to shifting process domains , 2014 .

[28]  Martha C. Anderson,et al.  Landsat-8: Science and Product Vision for Terrestrial Global Change Research , 2014 .

[29]  Niti B. Mishra,et al.  Mapping vegetation morphology types in a dry savanna ecosystem: integrating hierarchical object-based image analysis with Random Forest , 2014 .

[30]  N. Laporte,et al.  Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics , 2014 .

[31]  Ole Martin Bollandsås,et al.  Allometric models for prediction of above- and belowground biomass of trees in the miombo woodlands of Tanzania , 2013 .

[32]  A. Baccini,et al.  Improving pantropical forest carbon maps with airborne LiDAR sampling , 2013 .

[33]  O. Bollandsås,et al.  Relationships between diameter and height of trees in natural tropical forest in Tanzania , 2013 .

[34]  Kristofer D. Johnson,et al.  Approaches to monitoring changes in carbon stocks for REDD+ , 2013 .

[35]  Edward T. A. Mitchard,et al.  Woody encroachment and forest degradation in sub-Saharan Africa's woodlands and savannas 1982–2006 , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[36]  M. Boschetti,et al.  Land-use and land-cover change detection in a semi-arid area of Niger using multi-temporal analysis of Landsat images , 2013 .

[37]  T. McVicar,et al.  Impact of CO2 fertilization on maximum foliage cover across the globe's warm, arid environments , 2013 .

[38]  Piermaria Corona,et al.  VALUTAZIONE DELLE RISORSE FORESTALI A LIVELLO GLOBALE , 2013 .

[39]  Jan Verbesselt,et al.  Trend Change Detection in NDVI Time Series: Effects of Inter-Annual Variability and Methodology , 2013, Remote. Sens..

[40]  João Manuel de Brito Carreiras,et al.  Estimating the Above-Ground Biomass in Miombo Savanna Woodlands (Mozambique, East Africa) Using L-Band Synthetic Aperture Radar Data , 2013, Remote. Sens..

[41]  R. Nelson,et al.  Achieving accuracy requirements for forest biomass mapping: A spaceborne data fusion method for estimating forest biomass and LiDAR sampling error , 2013 .

[42]  Achim Zeileis,et al.  Shifts in Global Vegetation Activity Trends , 2013, Remote. Sens..

[43]  G. Tappan,et al.  Vegetation impoverishment despite greening: A case study from central Senegal , 2013 .

[44]  Gregory P. Asner,et al.  Unsustainable fuelwood extraction from South African savannas , 2013 .

[45]  Oliver Cartus,et al.  Mapping Canopy Height and Growing Stock Volume Using Airborne Lidar, ALOS PALSAR and Landsat ETM+ , 2012, Remote. Sens..

[46]  Maurizio Santoro,et al.  Mapping forest aboveground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band , 2012 .

[47]  Rasmus Fensholt,et al.  Greenness in semi-arid areas across the globe 1981–2007 — an Earth Observing Satellite based analysis of trends and drivers , 2012 .

[48]  J. Carreiras,et al.  Understanding the relationship between aboveground biomass and ALOS PALSAR data in the forests of Guinea-Bissau (West Africa) , 2012 .

[49]  Stefan Dech,et al.  Derivation of biomass information for semi-arid areas using remote-sensing data , 2012 .

[50]  Zhe Zhu,et al.  Object-based cloud and cloud shadow detection in Landsat imagery , 2012 .

[51]  S. Goetz,et al.  Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps , 2012 .

[52]  A. Baccini,et al.  Capabilities and limitations of Landsat and land cover data for aboveground woody biomass estimation of Uganda , 2012 .

[53]  I. Woodhouse,et al.  Quantifying small‐scale deforestation and forest degradation in African woodlands using radar imagery , 2012 .

[54]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[55]  Lars M. H. Ulander,et al.  L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest , 2011 .

[56]  R. Houghton,et al.  Characterizing 3D vegetation structure from space: Mission requirements , 2011 .

[57]  Sassan Saatchi,et al.  Measuring biomass changes due to woody encroachment and deforestation/degradation in a forest-savanna boundary region of central Africa using multi-temporal L-band radar backscatter , 2011 .

[58]  D. Burslem,et al.  Estimating aboveground biomass in forest and oil palm plantation in Sabah, Malaysian Borneo using ALOS PALSAR data , 2011 .

[59]  Casey M. Ryan,et al.  Above‐ and Belowground Carbon Stocks in a Miombo Woodland Landscape of Mozambique , 2011 .

[60]  W. Salas,et al.  Benchmark map of forest carbon stocks in tropical regions across three continents , 2011, Proceedings of the National Academy of Sciences.

[61]  F. J. García-Haro,et al.  Characterizing land condition variability in Ferlo, Senegal (2001–2009) using multi-temporal 1-km Apparent Green Cover (AGC) SPOT Vegetation data , 2011 .

[62]  S. Bruin,et al.  Analysis of monotonic greening and browning trends from global NDVI time-series , 2011 .

[63]  Masanobu Shimada,et al.  An Evaluation of the ALOS PALSAR L-Band Backscatter—Above Ground Biomass Relationship Queensland, Australia: Impacts of Surface Moisture Condition and Vegetation Structure , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[64]  Barbara Koch,et al.  Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment , 2010 .

[65]  Ashutosh Kumar Singh,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2010 .

[66]  D. Bowman,et al.  Has global environmental change caused monsoon rainforests to expand in the Australian monsoon tropics? , 2010, Landscape Ecology.

[67]  G. Foody Assessing the Accuracy of Remotely Sensed Data: Principles and Practices , 2010 .

[68]  A. Angelsen,et al.  Managing the Miombo Woodlands of Southern Africa: Policies, Incentives and Options for the Rural Poor , 2010 .

[69]  I. Woodhouse,et al.  Using satellite radar backscatter to predict above‐ground woody biomass: A consistent relationship across four different African landscapes , 2009 .

[70]  R. Fensholt,et al.  Evaluation of earth observation based long term vegetation trends - Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data , 2009 .

[71]  B. Markham,et al.  Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors , 2009 .

[72]  J. Hill,et al.  Recent Advances in Remote Sensing and Geoinformation Processing for Land Degradation Assessment , 2009 .

[73]  S. Goetz,et al.  Reply to Comment on ‘A first map of tropical Africa’s above-ground biomass derived from satellite imagery’ , 2008, Environmental Research Letters.

[74]  M. Schaepman,et al.  Proxy global assessment of land degradation , 2008 .

[75]  J. Glenday Carbon storage and emissions offset potential in an African dry forest, the Arabuko-Sokoke Forest, Kenya , 2008, Environmental monitoring and assessment.

[76]  Casey M. Ryan,et al.  Carbon sequestration and biodiversity of re-growing miombo woodlands in Mozambique , 2008 .

[77]  D. R. Cutler,et al.  Utah State University From the SelectedWorks of , 2017 .

[78]  Paolo D'Odorico,et al.  Biogeochemistry of Kalahari sands , 2007 .

[79]  Masanobu Shimada,et al.  PALSAR Radiometric and Geometric Calibration , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[80]  R. J. Scholes,et al.  Leaf green-up in a semi-arid African savanna –separating tree and grass responses to environmental cues , 2007 .

[81]  Mika Sulkava,et al.  Modeling the effects of varying data quality on trend detection in environmental monitoring , 2007, Ecol. Informatics.

[82]  Sassan Saatchi,et al.  Estimation of Forest Fuel Load From Radar Remote Sensing , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[83]  A. Verlinden,et al.  Changing grazing systems in central north Namibia , 2007 .

[84]  Ranga B. Myneni,et al.  Monitoring spring canopy phenology of a deciduous broadleaf forest using MODIS , 2006 .

[85]  A. Verlinden,et al.  Modeling woody vegetation resources using Landsat TM imagery in northern Namibia , 2006 .

[86]  R. Houghton,et al.  Emissions of carbon from land use change in sub‐Saharan Africa , 2006 .

[87]  A. Prasad,et al.  Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction , 2006, Ecosystems.

[88]  Alex C. Lee,et al.  Empirical relationships between AIRSAR backscatter and LiDAR-derived forest biomass, Queensland, Australia , 2006 .

[89]  I. Woodhouse Introduction to Microwave Remote Sensing , 2005 .

[90]  D. Harding,et al.  ICESat waveform measurements of within‐footprint topographic relief and vegetation vertical structure , 2005 .

[91]  W. Cohen,et al.  Estimates of forest canopy height and aboveground biomass using ICESat , 2005 .

[92]  Edwin W. Pak,et al.  An extended AVHRR 8‐km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data , 2005 .

[93]  David Ward,et al.  Do we understand the causes of bush encroachment in African savannas? , 2005 .

[94]  A. Verlinden,et al.  A comparison between indigenous environmental knowledge and a conventional vegetation analysis in north central Namibia , 2005 .

[95]  Steven R. Archer,et al.  Rainfall, land use and woody vegetation cover change in semi‐arid Australian savanna , 2005 .

[96]  J. Blair,et al.  An Ecosystem in Transition: Causes and Consequences of the Conversion of Mesic Grassland to Shrubland , 2005 .

[97]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[98]  Roberta E. Martin,et al.  GRAZING SYSTEMS, ECOSYSTEM RESPONSES, AND GLOBAL CHANGE , 2004 .

[99]  S. Fritz,et al.  A new land‐cover map of Africa for the year 2000 , 2004 .

[100]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[101]  C. Woodcock,et al.  Forest biomass estimation over regional scales using multisource data , 2004 .

[102]  J. Townshend,et al.  Global Percent Tree Cover at a Spatial Resolution of 500 Meters: First Results of the MODIS Vegetation Continuous Fields Algorithm , 2003 .

[103]  D. Walker,et al.  Greening of arctic Alaska, 1981–2001 , 2003 .

[104]  G. Foody,et al.  Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions , 2003 .

[105]  Brendan Mackey,et al.  Estimating forest biomass using satellite radar: an exploratory study in a temperate Australian Eucalyptus forest , 2003 .

[106]  R. Dubayah,et al.  Above-ground biomass estimation in closed canopy Neotropical forests using lidar remote sensing: factors affecting the generality of relationships , 2003 .

[107]  A. Strahler,et al.  Monitoring vegetation phenology using MODIS , 2003 .

[108]  Gretchen G. Moisen,et al.  Comparing five modelling techniques for predicting forest characteristics , 2002 .

[109]  Todd M. Scanlon,et al.  Determining land surface fractional cover from NDVI and rainfall time series for a savanna ecosystem , 2002 .

[110]  H. Zwally,et al.  Overview of ICESat's Laser Measurements of Polar Ice, Atmosphere, Ocean, and Land , 2002 .

[111]  W. Cohen,et al.  Lidar remote sensing of above‐ground biomass in three biomes , 2002 .

[112]  J. C. Taylor,et al.  Real-time monitoring of vegetation biomass with NOAA-AVHRR in Etosha National Park, Namibia, for fire risk assessment , 2002 .

[113]  S. Carpenter,et al.  Catastrophic shifts in ecosystems , 2001, Nature.

[114]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[115]  P. Gonzalez Desertification and a shift of forest species in the West African Sahel , 2001 .

[116]  Guy F. Midgley,et al.  A proposed CO2‐controlled mechanism of woody plant invasion in grasslands and savannas , 2000 .

[117]  D. Ward,et al.  Are Namibia's grasslands desertifying? , 2000 .

[118]  Dirk H. Hoekman,et al.  Land cover type and biomass classification using AirSAR data for evaluation of monitoring scenarios in the Colombian Amazon , 2000, IEEE Trans. Geosci. Remote. Sens..

[119]  A. Grainger Constraints on modelling the deforestation and degradation of tropical open woodlands , 1999 .

[120]  C. Wessman,et al.  Textural Analysis of Historical Aerial Photography to Characterize Woody Plant Encroachment in South African Savanna , 1998 .

[121]  R. Scholes,et al.  Tree-grass interactions in Savannas , 1997 .

[122]  S. Running,et al.  A continental phenology model for monitoring vegetation responses to interannual climatic variability , 1997 .

[123]  Adrian Luckman,et al.  A study of the relationship between radar backscatter and regenerating tropical forest biomass for spaceborne SAR instruments , 1997 .

[124]  A. R. Orme,et al.  The physical geography of Africa , 1997 .

[125]  Kamal Sarabandi,et al.  Estimation of forest biophysical characteristics in Northern Michigan with SIR-C/X-SAR , 1995, IEEE Trans. Geosci. Remote. Sens..

[126]  Ranga B. Myneni,et al.  The interpretation of spectral vegetation indexes , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[127]  Guoqing Sun,et al.  Mapping biomass of a northern forest using multifrequency SAR data , 1994, IEEE Trans. Geosci. Remote. Sens..

[128]  Marc L. Imhoff,et al.  Radar backscatter/biomass saturation: observations and implications for global biomass assessment , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[129]  Thuy Le Toan,et al.  Dependence of radar backscatter on coniferous forest biomass , 1992, IEEE Trans. Geosci. Remote. Sens..

[130]  Thuy Le Toan,et al.  Relating forest biomass to SAR data , 1992, IEEE Trans. Geosci. Remote. Sens..

[131]  Compton J. Tucker,et al.  Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel - 1980-1984 , 1985 .

[132]  J. R. Jensen Biophysical Remote Sensing , 1983 .

[133]  R. Colwell Remote sensing of the environment , 1980, Nature.

[134]  G. Hardin,et al.  The Tragedy of the Commons , 1968, Green Planet Blues.

[135]  John Grace,et al.  Pre-rain green-up is ubiquitous across southern tropical Africa: implications for temporal niche separation and model representation. , 2017, The New phytologist.

[136]  Stefan Dech,et al.  Remote Sensing Time Series Revealing Land Surface Dynamics: Status Quo and the Pathway Ahead , 2015 .

[137]  Nicolas Baghdadi,et al.  Testing Different Methods of Forest Height and Aboveground Biomass Estimations From ICESat/GLAS Data in Eucalyptus Plantations in Brazil , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[138]  C. Tucker,et al.  Re-Greening Sahel: 30 Years of Remote Sensing Data and Field Observations (Mali, Niger) , 2014 .

[139]  Jean-Pascal van Ypersele de Strihou Climate Change 2014 - Synthesis Report , 2015 .

[140]  Sandra A. Brown,et al.  Sourcebook for land use, land-use change and forestry projects , 2013 .

[141]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[142]  Mayaux Philippe,et al.  A First Look at Carbon Stocks and their Variation in Congo Basin Forests , 2009 .

[143]  S. Wunder,et al.  Miombo woodlands - opportunities and barriers to sustainable forest management , 2007 .

[144]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[145]  J. Mendelsohn,et al.  Farming systems in Namibia , 2006 .

[146]  David Niemeijer,et al.  Ecosystems and Human Well-Being: Desertification Synthesis , 2005 .

[147]  United Kingdom,et al.  GLOBAL FOREST RESOURCES ASSESSMENT 2005 , 2005 .

[148]  M. McKittrick,et al.  Living on the Land: Change in Forest Cover in North-Central Namibia 1943-1996 , 2002 .

[149]  B. Strohbach Vegetation degradation in Namibia , 2001 .

[150]  A. K. Milne,et al.  The potential of synthetic aperture radar (SAR) for quantifying the biomass of Australia's woodlands. , 2000 .

[151]  J. Fransson Estimation of stem volume in boreal forests using ERS-1 C- and JERS-1 L-band SAR data , 1999 .

[152]  E. Chidumayo,et al.  Miombo Ecology and Management: An Introduction , 1997 .

[153]  B. Campbell The miombo in transition: woodlands and welfare in Africa. , 1996 .

[154]  D. Schimel,et al.  Mechanisms of shrubland expansion: land use, climate or CO2? , 1995 .

[155]  JoBea Way,et al.  Radar estimates of aboveground biomass in boreal forests of interior Alaska , 1994, IEEE Trans. Geosci. Remote. Sens..

[156]  J. V. D. Merwe National atlas of South West Africa (Namibia) = Nasionale atlas van Suidwes-Afrika (Namibië) , 1983 .

[157]  J. Lanly Tropical forest resources , 1982 .

[158]  W. J. Langford Statistical Methods , 1959, Nature.